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Preliminaries
Second order formulation (Einstein gravity):

• metric tensor gµν

• curvature parametrized by Riemann tensor:
Rρ

µνσ = ∂µΓρ
νσ − ∂νΓρ

µσ + Γρ
µλΓλ

νσ − Γρ
νλΓλ

µσ

• torsion: Tλ
µν = Γλ

µν − Γλ
νµ = 0

• Christoffel Symbols: Γλ
µν = 1

2g
λρ(∂µgνρ + ∂νgρµ − ∂ρgµν)

• action: SEH = 1
16πG

∫
d4x

√
−gR → Einstein Field Equations

First order formulation:

• vierbein and spin connection e a
µ , ω

ab
µ

• curvature parametrized by the curvature 2-form:
Rµνab = ∂µωνab − ∂νωµab − ωµacω

c
ν b − ωνacω

c
µ b

• torsion: T a
µν = ∂µe

a
ν − ∂νe

a
µ + ω a

µ be
c

ν − ω a
ν be

c
µ

• action: S = 1
16πG

∫ 1
2ϵabcde

a ∧ eb ∧Rcd (Palatini action)
• → Einstein Field Equations + Torsionless condition



Approach of Einstein 4d gravity as a gauge theory

The algebra

• Employ the first order formulation of GR
• Gauge theory of Poincaré group ISO(1,3)
• Ten generators (Translations Pa & LT Mab)

see for details:
Utiyama ’56, Kibble ’61,
McDowell-Mansuri ’77,
Chamseddine-West ’77,

Ivanov-Niederle ’82,
Kibble-Stelle ’85,

Wilczek ’98, Ortin ’04

Generators satisfy the commutation relations:

[Mab,Mcd] = ηacMdb − ηbcMda − ηadMcb + ηbdMca

[Pa,Mbc] = ηabPc − ηacPb , [Pa, Pb] = 0

where ηab = diag(−1,+1,+1,+1) and a, b, c, d = 1, . . . , 4.



The gauging procedure

• Introduction of a gauge vector field for each generator:
6 fields ω ab

µ for the local SO(1, 3) (LT)
• 4 quantities that:

• spacetime vector field (lives on TxM)
• vector extension of SO(1, 3)

→ appropriate choice: the 4 e a
µ (invertible)

• The gauge connection is:
Aµ(x) = e a

µ (x)Pa + 1
2ω

ab
µ (x)Mab

• Transforms in the adjoint rep, according to the rule:

δAµ = ∂µϵ+ [Aµ, ϵ]
• The gauge transformation parameter, ϵ(x) is expanded as:

ϵ(x) = ξa(x)Pa + 1
2λ

ab(x)Mab

• Combining the above → transformations of the fields:

δe a
µ = ∂µξ

a − e b
µ λ

a
b + ω ab

µ ξb

δω ab
µ = ∂µλ

ab − λa
cω

cb
µ + λb

cω
ca

µ

• Gauge transformations ↔ diffeomorphism transformations



Curvature and Torsion

• Curvatures of the fields are given by:

Rµν(A) = ∂µAν − ∂νAµ + [Aµ, Aν ]

• Tensor Rµν is also valued in Poincaré algebra:

Rµν(A) = T a
µν Pa + 1

2R
ab

µν Mab

• Combining the above → component tensor curvatures:

T a
µν = ∂µe

a
ν − ∂νe

a
µ + e b

µ ω
a

νb − e b
ν ω

a
µb

R ab
µν = ∂µω

ab
ν − ∂νω

ab
µ − ω cb

µ ω a
ν c + ω ac

µ ω b
νc

• Palatini action is considered
• Torsionless condition + Field equations



Gauge theory of SO(2,3)
• Instead of the Poincaré group - Anti-de Sitter group: SO(2,3)
• Same amount of generators BUT they can be written on equal

footing (semisimple group):

[M̂AB , M̂CD] = ηACM̂DB − ηBCM̂DA − ηADM̂CB + ηBDM̂CA

• ηAB is the 5-dim Minkowski metric with two timelike coefficients
(1st and 5th) and A, . . . ,D = 1 . . . 5

• Perform a splitting of the indices A = (a, 5)
• Define M̂ab = Mab and M̂a5 = 1

mPa, [m] = L−1

• Gauge connection: Aµ = 1
2 ω̂

AB
µ M̂AB = 1

2ω
ab

µ Mab + e a
µ Pa

• where ω̂ ab
µ = ω ab

µ and ω̂ a5
µ = me a

µ

• The same for the field strength tensor R̂ AB
µν :

R̂ ab
µν = R ab

µν + 2m2e [a
µ e b]

µ , R̂ a5
µν = mT a

µν



• Consider the following SO(2, 3) invariant quadratic action:

S = aAdS

∫
d4x

(
myEϵABCDE

1
4 R̂µν

ABR̂ρσ
CDϵµνρσ+

+λ
(
yEyE +m−2) )

• yE an internal space vector field
• vector taken to be gauge fixed towards the 5-th direction:

y = y0 =
(
0, 0, 0, 0,m−1)

.
• the non-vanishing value y5(x) is responsible for the symmetry

breaking of SO(2, 3) to the SO(1, 3)

S = aAdS

4

∫
d4xϵµνρσR̂ ab

µν R̂ cd
ρσ ϵabcd

= aAdS

4

∫
d4xϵµνρσϵabcd

(
LRR +m2LeeR +m4Leeee

)
• LRR: Gauss-Bonnet - no contribution to the e.o.m.
• LeeR: Palatini action (torsionless + Einstein Field Equations)
• Leeee: Plays the role of cosmological constant
• Solution of Einstein Field Equations is the Anti-de Sitter space
• If m → 0: Minkowski spacetime (flat solution).



Conformal 4d gravity as a gauge theory

• Group parametrizing the symmetry: SO(2, 4)
• 15 generators: 6 LT Mab, 4 translations, Pa, 4 conformal boosts

Ka and the dilatation D
• Following the same procedure one calculates transf of the gauge

fields and tensors after defining the gauge connection
• Action is taken of SO(2, 4) invariant quadratic form
• Initial symmetry breaks under certain constraints resulting to the

Weyl action Kaku,Townsend,Van Nieu/zen ’77,
Fradkin, Tseytlin ’85

• Initial symmetry breaks spontaneously by introducing a scalar in
the adjoint rep fixed in the dilatation direction, or by two scalars
in vector reps.

Roumelioti, Stefas, Z ’24



SSB by using a scalar in the adjoint representation
Gauge connection:

Aµ = 1
2ωµ

abMab + eµ
aPa + bµ

aKa + ãµD,

Field strength tensor:

Fµν = 1
2Rµν

abMab + R̃µν
aPa +Rµν

aKa +RµνD,

where

Rµν
ab = ∂µων

ab − ∂νωµ
ab − ωµ

acωνc
b + ων

acωµc
b − 8e[µ

[abν]
b]

= R(0)ab
µν − 8e[µ

abν]
b],

R̃µν
a = ∂µeν

a − ∂νeµ
a + ωµ

abeνb − ων
abeµb − 2ã[µeν]

a

= T (0)a
µν − 2ã[µeν]

a,

Rµν
a = ∂µbν

a − ∂νbµ
a + ωµ

abbνb − ων
abbµb + 2ã[µbν]

a

= T (0)a
µν (b) + 2ã[µbν]

a,

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a,



We start with the parity conserving action, which is quadratic in
terms of the field strength tensor and introduce a scalar in the rep 15

SSO(2,4) = aCG

∫
d4x

[
tr ϵµνρσmϕFµνFρσ +

(
ϕ2 −m−21l4

)]
,

The scalar expanded on the generators is:

ϕ = ϕabMab + ϕ̃aPa + ϕaKa + ϕ̃D,

We pick the specific gauge in which ϕ is diagonal of the form
diag(1, 1,−1,−1). Specifically we choose ϕ to be only in the direction
of the dilatation generator D:

ϕ = ϕ0 = ϕ̃D
ϕ2=m−21l4−−−−−−−→ ϕ = −2m−1D.

The resulting broken action is (after employing anticommutator
relations and the traces over the generators):

SSO(1,3) = aCG

4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd



The ãµ is not present in the action, so we can set it equal to zero.

Rµν is also absent so we can also set it equal to zero

Rµν = ∂µãν − ∂ν ãµ + 4e[µ
abν]a = 0 ãµ=0−−−→

eµ
abνa − eν

abµa = 0

We examine two possible solutions of the above equation:
• bµ

a = aeµ
a, Chamseddine ’03

• bµ
a = − 1

4
(
Rµ

a + 1
6Reµ

a
)

Kaku, Townsend, van Nieuwenhuizen, 78
Freedman, Van Proyen ”Supergravity” ’12

The first choice leads to the Einstein-Hilbert action, while the second
leads to Weyl action.



Einstein-Hilbert action

• When bµ
a = aeµ

a, the broken action becomes:

SSO(1,3) = aCG

4

∫
d4xϵµνρσϵabcdRµν

abRρσ
cd =⇒

SSO(1,3) = aCG

4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν R(0)cd
ρσ − 16m2aR(0)ab

µν eρ
ceσ

d+

+ 64m4a2eµ
aeν

beρ
ceσ

d
]

This action consists of three terms: one G-B topological term,
the E-H action, and a cosmological constant. For a < 0 describes
GR in AdS space.



Weyl action
• When bµ

a = − 1
4 (Rµ

a + 1
6Reµ

a), the broken action becomes

S = aCG

4

∫
d4xϵµνρσϵabcd

[
R(0)ab

µν − 1
2

(
ẽµ

[aRν
b] − ẽν

[aRµ
b]

)
+

+ 1
3Rẽµ

[aẽν
b]

]
[
R(0)cd

ρσ − 1
2

(
ẽρ

[cRσ
d] − ẽσ

[cRρ
d]

)
+

+ 1
3Rẽρ

[cẽσ
d]

]
,

where ẽµ
a = meµ

a is the rescaled vierbein. The above action is
equal to

S = aCG

4

∫
d4xϵµνρσϵabcdCµν

abCρσ
cd,

where Cµν
ab is the Weyl conformal tensor.



The nc framework & gauge theories

• Quantization of phase space of xi, pj→ replace with Herm
operators: x̂i, p̂j satisfying:[x̂i, p̂j ] = iℏδi

j

• Noncommutative space → quantization of space: xi → replace
with operators x̂i (∈ A) satisfying: [x̂i, x̂j ] = iθij(x̂)

Connes ’94, Madore ’99

• Antisymmetric tensor θij(x̂) - defines the nc of the space
• Canonical case: θij(x̂) = θij , i, j = 1, . . . , N

For N = 2 → Moyal plane
• Lie-type case: θij(x̂) = Cij

kx̂k, i, j = 1, . . . , N
For N = 3 → Noncommutative (fuzzy) sphere (SU(2))

• nc framework admits a matrix representation (operators)
• Derivation: ei(A) = [di, A], di ∈ A
• Integration → Trace For Reviews:

Szabo ’01, Douglas-Nekrasov ’01



The nc gauge theories

• Natural intro of nc gauge theories through covariant nc
coordinates: Xµ = Xµ +Aµ Madore-Schraml-Schupp-Wess ’00

• Obeys a covariant gauge transformation rule: δXµ = i[ϵ,Xµ]

• Aµ transforms in analogy with the gauge connection:
δAµ = −i[Xµ, ϵ] + i[ϵ, Aµ] , (ϵ - the gauge parameter)

• Definition of a nc covariant field strength tensor depends on the
space:

• Canonical case: Fab = [Xa, Xb] − iθab

• Lie-Type case: Fab = [Xa, Xb] − iCabcXc



Non-Abelian case

▷ In nonabelian case, where are the gauge fields valued?

• Let us consider the CR of two elements of an algebra:

[ϵ, A] = [ϵATA, ABTB ] = 1
2{ϵA, AB}[TA, TB ]+1

2 [ϵA, AB ]{TA, TB}

• Not possible to restrict to a matrix algebra:
last term neither vanishes in nc nor is an algebra element

• There are two options to overpass the difficulty:
Ćirić-Gočanin-Konjik-Radovanović ’18

• Consider the universal enveloping algebra
• Extend the generators and/or fix the rep so that the

anticommutators close

▷ We employ the second option



The 4d covariant noncommutative space

Motivation for a 4d covariant nc space

• Constructing field theories on nc spaces is non-trivial: nc
deformations break Lorentz invariance

• such an example is the fuzzy sphere (2d space) - coords are
identified as rescaled SU(2) generators Madore ’92

Hammou-Lagraa-Sheikh Jabbari ’02
Vitale-Wallet ’13, Vitale ’14

Jurman-Steinacker ’14
Chatzistavrakidis-Jonke-Jurman-Manolakos-Manousselis-GZ ’18

• Previous work on 3d nc gravity on the covariant spaces R3
λ(R1,2

λ )
• Need of 4d covariant nc space to construct a gravity gauge theory



Construction of the 4d covariant nc space
• dS4: homogeneous spacetime with constant curvature (positive)
• Described by the embedding ηABXAXB = R2 into M5

• Aim for a nc version of dS4



Snyder’s Model ’47
Snyder ’47

• The SO(1,4) generators, Jmn,m, n = 0, . . . , 4, satisfy the
commutation relation:

[Jmn, Jrs] = i(ηmrJns + ηnsJmr − ηnrJms − ηmsJnr)

• Consider decomposition of SO(1, 4) to maximal subgroup,
SO(1, 3)

• Introduce a length parameter λ and define operators as rescalings
of the generators

• Thus, the commutation relations regarding the operators Θµν

and Xµ are:

[Θij ,Θkl] = iℏ (ηikΘjl + ηjlΘik − ηjkΘil − ηilΘjk) ,
[Θij , Xk] = iℏ (ηikXj − ηjkXi) ,

[Xi, Xj ] = iλ2

ℏ
Θij

• The noncommutativity of coordinates becomes manifest



Yang’s Model ’47
• Requiring covariance → use a group with larger symmetry →

minimum extension: SO(1,5)

Yang ’47
Kimura ’02, Heckman-Verlinde ’15

Steinacker ’16
Sperling-Steinacker ’17,’19

Burić-Madore ’14,’15
Manousselis-Manolakos-GZ ’19,’21

• The SO(1,5) generators, JMN ,M,N = 0, . . . , 5, satisfy the
commutation relation:

[JMN , JP Σ] = i(ηMPJNΣ + ηNΣJMP − ηNPJMΣ − ηMΣJNP )

• Employ a 2-step decomposition SO(1, 5) ⊃ SO(1, 4) ⊃ SO(1, 3)



Yang’s Model ’47 (Continued)
• Introduce a length parameter λ and define operators as rescalings

of the generators (like in Snyder’s case)
• Thus, the commutation relations regarding all the operators

Θµν , Xµ, Pµ, h are:

[Θµν ,Θρσ] = iℏ(ηµρΘνσ + ηνσΘµρ − ηνρΘµσ − ηµσΘνρ) ,
[Θµν , Xρ] = iℏ(ηµρXν − ηνρXµ)
[Θµν , Pρ] = iℏ(ηµρPν − ηνρPµ)

[Pµ, Pν ] = i
ℏ
λ2 Θµν , [Xµ, Xν ] = i

λ2

ℏ
Θµν ,

[Pµ, h] = −i ℏ
λ2Xµ , [Xµ, h] = i

λ2

ℏ
Pµ ,

[Pµ, Xν ] = iℏηµνh , [Θµν , h] = 0

• The above relations describe the noncommutative space



Noncommutative gauge theory of 4d gravity

• Formulation of gravity on the above space
• Noncommutative gauge theory construction + the procedure

described in the Einstein gravity case
Kimura ’02, Heckman-Verlinde ’15

• Gauge the isometry group of the space, SO(1, 4) as seen as a
subgroup of the SO(1, 5) we ended up

• Anticommutators do not close → enlargement of the algebra +
fix the representation

Aschieri-Castellani ’09
Chatzistavrakidis-Jonke-Jurman-Manolakos-Manousselis-GZ ’18

• Noncommutative gauge theory of SO(2, 4) × U(1)
• The generators of the group are represented by combinations of

the 4x4 gamma matrices



• Specifically, the generators are expressed by:
• six Lorentz rotation generators: Mab = − i

4 [γa, γb]

• four generators for conformal boosts: Ka = 1
2γa(1 + γ5)

• four generators for translations: Pa = −1
2γa(1 − γ5)

• one generator for special conformal transformations: D = −1
2γ5

• one U(1) generator: 1l
• The above expressions of the generators allow the calculation of

the algebra they satisfy:

[Mab,Mcd] = ηbcMad + ηadMbc − ηacMbd − ηbdMac,

[Ka, Pb] = −2 (ηabD +Mab) , [Pa, D] = Pa, [Ka, D] = −Ka,

[Mab,Kc] = ηbcKa − ηacKb, [Mab, Pc] = ηbcPa − ηacPb



• Generators satisfy the following anticommutation relations:
Smolin ’03

{Mab,Mcd} = 1
2 (ηacηbd − ηbcηad) − iϵabcdD,

{Mab, Pc} = +iϵabcdP
d,

{Mab,Kc} = −iϵabcdK
d,

{Mab, D} = 2MabD,

{Pa,Kb} = 4MabD + ηab,

{Ka,Kb} = {Pa, Pb} = −ηab,

{Pa, D} = {Ka, D} = 0.

• We will introduce gauge fields in a motivated way
• Use the general treatment of nc gauge theories



NC gauge theory and the action
Manolakos, Manousselis, GZ ’21

• Start with the following action:
S = Tr

(
[Xµ, Xν ] − κ2Θµν

) (
[Xρ, Xσ] − κ2Θρσ

)
ϵµνρσ

• Field equations satisfied by the nc space for κ2 = iλ2/ℏ
• Introduce gauge fields as fluctuations:

S = Trtrϵµνρσ
(
[Xµ +Aµ, Xν +Aν ] − κ2(Θµν + Bµν)

)(
[Xρ +Aρ, Xσ +Aσ] − κ2(Θρσ + Bρσ)

)
• The above action is written:

S = Trtr
(

[Xµ,Xν ] − iλ2

ℏ
Θ̂µν

) (
[Xρ,Xσ] − iλ2

ℏ
Θ̂ρσ

)
ϵµνρσ

:= TrtrRµνRρσϵ
µνρσ δS−→

X ,Θ̂
ϵµνρσRρσ = 0 , ϵµνρσ[Xν ,Rρσ] = 0

• where we have defined:
- Xµ = Xµ + Aµ, the covariant coordinate
- Θ̂µν = Θµν + Bµν , the covariant noncommutative tensor
- Rµν = [Xµ, Xν ] − i λ2

ℏ Θ̂µν , the field strength tensor



Gauge connection and field strength tensor decompose as:
Aµ(X) = e a

µ ⊗ Pa + ω ab
µ ⊗ Mab + b a

µ ⊗ Ka + ãµ ⊗ D + aµ ⊗ I4 .

Rµν(X) = R̃ a
µν ⊗ Pa + R ab

µν ⊗ Mab + R a
µν ⊗ Ka + R̃µν ⊗ D + Rµν ⊗ I4 .

The component curvatures:

Rµν = [Xµ, aν ] − [Xν , aµ] + [aµ, aν ] + [b a
µ , bνa] + [ãµ, ãν ] +

1
2

[ω ab
µ , ωνab]

+ [eµa, e a
ν ] −

iℏ
λ2 Bµν

R̃µν = [Xµ, ãν ] + [aµ, ãν ] − [Xν , ãµ] − [aν , ãµ] − i{bµa, e a
ν } + i{bνa, e a

µ }

+
1
2

ϵabcd[ω ab
µ , ω cd

ν ] −
iℏ
λ2 B̃µν

R a
µν = [Xµ, b a

ν ] + [aµ, b a
ν ] − [Xν , b a

µ ] − [aν , b a
µ ] + i{bµb, ω ab

µ } − i{bνb, ω ab
µ }

+ i{ãµ, e a
ν } − i{ãν , e a

µ } + ϵabcd([e b
µ , ω cd

ν ] − [e b
ν , ω cd

µ ]) −
iℏ
λ2 B a

µν

R̃ a
µν = [Xµ, e a

ν ] + [aµ, e a
ν ] − [Xν , e a

µ ] − [aν , e a
µ ] + i{b a

µ , ãν} − i{b a
ν , ãµ}

− ([b b
µ , ω cd

ν ] − [b b
ν , ω cd

µ ])ϵabcd − i{ω ab
µ , eνb} + i{ω ab

ν , eµb} −
iℏ
λ2 B̃ a

µν

R ab
µν = [Xµ, ω ab

n ] + [aµ, ω ab
ν ] − [Xν , ω ab

µ ] − [aν , ω ab
m ] + 2i{b a

µ , b b
ν } + ([b c

µ , e d
ν ]

− [b c
ν , e d

µ ])ϵabcd +
1
2

([ãµ, ω cd
ν ] − [ãν , ω cd

µ ])ϵabcd + 2i{ω ac
µ , ω b

ν c}

+ 2i{e a
µ , e b

ν } −
iℏ
λ2 B ab

µν



Symmetry breaking
Introduction of auxiliary field Φ(X) charged under U(1):

Φ = ϕ̃a ⊗ Pa + ϕab ⊗Mab + ϕa ⊗Ka + ϕ⊗ I4 + ϕ̃⊗D

into the action:
S = TrtrG λΦ(X)RµνRρσε

µνρσ + η(Φ(X)2 − λ−2IN ⊗ I4) ,
induces a symmetry breaking:

Sbr = Tr
(√

2
4 εabcdR

ab
µν R cd

ρσ − 4RµνR̃ρσ

)
εµνρσ

when the auxiliary field is gauge fixed as:
Φ(X) = ϕ̃(X) ⊗D|ϕ̃=−2λ−1 = −2λ−1IN ⊗D

Residual symmetry: SO(1, 3) × U(1)

The constraints that correspond to the above breaking are:
Chamseddine ’02

R a
µν = i

2 R̃
a

µν = 0 leading to ãµ = 0, b a
µ = i

2e
a

µ and B a
µν = i

2 B̃
a

µν



The commutative limit

• The 2-form field, Bµν and aµ decouple
• The commutators of functions vanish: [f(x), g(x)] → 0
• The anticommutators of functions reduce to product:

{f(x), g(x)} → 2f(x)g(x)
• The inner derivation becomes: [Xµ, f ] → ∂µf

• Trace reduces to integration:
√

2
4 Tr →

∫
d4x

• We also regard the following reparametrizations:

- e a
µ → ime a

µ , Pa → − i

m
Pa , R̃ a

µν → imT a
µν

- ω ab
µ → − i

2ω
ab

µ , Mab → 2iMab , R ab
µν → − i

2R
ab

µν

• Similar procedure to the gauge-theoretic approach of Einstein
gravity is followed leading to the same results, i.e. Palatini action
with cosmological constant



The transformations of the fields:

δω ab
m = −i[Xm, λab] − i[am, λab] + i[ϵ0, ω ab

m ] − 2{ξa, b b
m} −

1
2

{λa
c, ω bc

m }

−
1
2

{ξ̃a, e b
m} + i[ξc, e d

m]ϵabcd +
i

2
[ϵ̃0, ω cd

m ]ϵabcd +
i

2
[λcd, ãm]ϵabcd − i[ξ̃c, b d

m]ϵabcd

δe a
m = −i[Xm, ξ̃a] − i[am, ξ̃a] + i[ϵ0, e a

m ] − {ξa, ãm} + {ϵ̃0, b a
m} +

1
4

{λa
b, e b

m}

−
1
4

{ξ̃b, ω ab
m } + i[ξc, ω bd

m ]ϵabcd − i[λcd, b b
m]ϵabcd

δb a
m = −i[Xm, ξa] − i[am, ξa] + i[ϵ0, b a

m ] − {ξb, ω ab
m } − 2{ϵ̃0, e a

m} +
1
2

{λa
b, b b

m}

+ {ξ̃a, ãm} + i[λbc, e d
m]ϵabcd + i[ξ̃b, ω cd

m ]ϵabcd

δam = −i[Xm, ϵ0] − i[am, ϵ0] + i[ξa, b a
m ] + i[ϵ̃0, ãm] +

i

2
[λab, ω ab

m ] +
i

2
[ξ̃a, e a

m ]

δãm = −i[Xm, ϵ̃0] − i[am, ϵ̃0] + i[ϵ0, ãm] + {ξa, e a
m} − {ξ̃a, b a

m} +
i

2
[λad, ω bc

m ]ϵabcd

(Transformations of the component of Bmn are calculated as well)



Unification of gravity theories with Internal Interactions
• So far in the gauge theoretic approach of gravity, general

relativity is described by gauging the symmetry of the tangent
manifold in four dimensions.

• Usually the dimension of the tangent space is considered to be
equal to the dimension of the curved manifold. However, the
tangent group of a manifold of dimension d is not necessarily
SOd.

Weinberg ’84
• It has been suggested that by gauging an enlarged symmetry of

the tangent space in four dimensions one could unify gravity with
internal interactions.

Chamseddine, Mukhanov ’10
• We aim to unify gravities as a gauge theory with internal

interactions under one unification gauge group.
• Attempts of unification for the case of Einstein gravity:

Chamseddine and Mukhanov, 2010; Percacci, 1991;
Konitopoulos, Roumelioti, GZ, 2023.



Unification group

• Weyl gravity is based on gauging the SO(2, 4), while Fuzzy
gravity on SO(2, 4) × U(1).

• Internal Interactions by SO(10) (GUT).
• Spontaneous symmetry breakings are used in all cases.

Usually to have a Chiral theory we need a SO(4n+ 2) group. The
smallest unification group in which both Majorana and Weyl
condition can be imposed is SO(2, 16) from which:

SO(2, 16) SSB−−−→ SO(2, 4) × SO(12)

and

SO(12) SSB−−−→ SO(10) × [U(1)].



Breakings and branching rules

We start from SO(2, 16) ∼ SO(18)
• For CG we gauge SO(2, 4) ∼ SU(2, 2) ∼ SO(6) ∼ SU(4)
• For FG we gauge SO(2, 4) × U(1) ∼ SO(6) × U(1) ∼ U(4)
• For internal interactions we require SO(10) GUT.

CSO(2,16)(SO(2, 4)) = SO(10) and
CSO(2,16)(SO(2, 4) × U(1)) = SO(10) × U(1).



Breakings and branching rules (Continued)

SO(18) ⊃ SU(4) × SO(12)

18 = (6, 1) + (1, 12) vector
153 = (15, 1) + (6, 12) + (1, 66) adjoint
256 = (4, 3̄2) + (4̄, 32) spinor
170 = (1, 1) + (6, 12) + (20′, 1) + (1, 77) 2nd rank symmetric

VEV in the ⟨1, 1⟩ component of a scalar in 170 leads to
SU(4) × SO(12).



Breakings and branching rules (Continued)

We break the SO(12) down to SO(10) × U(1) or to SO(10) with the
66 rep or the 77 rep.

SO(12) ⊃ SO(10) × U(1)
66 = (1)(0) + (10)(2) + (10)(−2) + (45)(0)
77 = (1)(4) + (1)(0) + (1)(−4) + (10)(2) + (10)(−2) + (54)(0)

by giving VEV to the ⟨(1)(0)⟩ of the 66 rep we obtain SO(10) ×U(1).

by giving VEV to the ⟨(1)(4)⟩ of the 77 rep we obtain SO(10).



Breakings and branching rules (Continued)
We break SU(4) in 2 steps:

• First step: Breaking SU(4) → Sp4:

SU(4) ⊃ Sp4
4 = 4
6 = 1 + 5

giving VEV to a scalar in 6 rep in the ⟨1⟩ component, the SU(4)
breaks down to the Sp4.

• Second step: Breaking Sp4 → SU(2) × SU(2)

Sp4 ⊃ SU(2) × SU(2)
5 = (1, 1) + (2, 2)
4 = (2, 1) + (1, 2).

giving VEV in ⟨1, 1⟩ of a scalar in the 5 rep we obtain eventually
the Lorentz group SU(2) × SU(2) ∼ SO(1, 3).



Fermions

Weyl condition: ΓD+1ψ± = ±ψ±, D = even.

Note that since ΓD+1 = γ5 ⊗ γd+1 , the eigenvalues of γ5 and γd+1

are interrelated. However the choice of the eigenvalue of ΓD+1 does
not impose the eigenvalue on γ5!

Majorana condition: ψ = Cψ̄T

Weyl-Majorana spinors can exist when D = 4n+ 2 .
Type of spinors of SO(p, q) depends on signature (p− q)mod8.
For p+ q = even :

• 0: real rep
• 4: quaternionic rep
• 2 or 6: complex rep

Chapline & Slansky, 1982; Polchinski, 1998; D’Auria et al., 2001;
Figueroa-O’Farrill, n.d.



Fermions (Continued)
In the case of SO(2, 16) the signature is 6, and imposing the Weyl
and Majorana conditions is permitted.

Dirac spinors are defined as direct sum of Weyl spinors and the Weyl
condition chooses one of them, say σ18 = 256.

Spinor rep branching rules are:

SO(18) ⊃ SU(4) × SO(12)
256 = (4, 3̄2) + (4̄, 32)

Imposing Majorana condition the fermions are in the (4̄, 32). Then

SO(12) ⊃ SO(10) × [U(1)]
32 = (1̄6)(1) + (16)(−1)

On the other hand

SU(4) → Sp4 → SU(2) × SU(2)
4 = 4 = (2, 1) + (1, 2).



Fermions (Continued)
After all the breakings:

SU(2) × SU(2) × SO(10) × [U(1)]
{[(2, 1) + (1, 2)}{(16)(−1) + (1̄6)(1)}

= 16L(−1) + 1̄6L(1) + 16R(−1) + 1̄6R(1)

and since 1̄6R(1) = 16L(−1) and 1̄6L(1) = 16R(−1),

= 2 × 16L(−1) + 2 × 16R(−1).

Finally, keeping only the left-handed part we obtain:

2 × 16L(−1)

Imposing also the Majorana condition in lower dims we obtain

16L(−1) of SO(10) × [U(1)]



Fermions in Fuzzy Gravity and Unification with
Internal Interactions

• Fermions should be chiral in the original theory to have a chance
to survive in low energies

• they should appear in a matrix representation since FG is a
matrix model

Fortunately the way out was suggested in unification schemes with
extra fuzzy dimensions Chatzistavrakidis, Steinacker, Z

Instead of using fermions in fundamental, spinor or tensor reps of an
SU(N), we can use bi-fundamental reps of cross product SU(N)
groups.
Interesting example N = 1, SU(N)k models:

SU(N)1 × SU(N)2 × ...× SU(N)k

with matter content

(N, N̄, 1, ..., 1) + (1, N, N̄ , ..., 1) + ...+ (N̄ , 1, 1, ..., N)

Ma, Mondragon, Z, 2004
with successful phenomenology, N = 1, SU(3)3.



Fermions in Fuzzy Gravity and Unification with
Internal Interactions (Continued)

• In FG choosing to start with the SO(6) × SO(12) as the initial
gauge theory with fermions in the (4, 3̄2) we satisfy the criteria to
obtain chiral fermions in tensorial representation.

• Weyl and Majorana conditions do not concern the global or local
nature of the gauge part of the theory. Therefore all the
discussion of unifying conformal conformal gravity with internal
interactions can be repeated.

• The gauge U(1) of FG due to the anticommutation relations, is
identified with the one appearing in the SO(12) ⊃ SO(10) ×U(1).



Thank you for your attention!


