Quantum Dynamics as Classical Dynamics and Quantum/Symplectic Computers

I. Volovich

Steklov Mathematical Institute

11th MATHEMATICAL PHYSICS MEETING 2 - 6 September 2024, Belgrade, Serbia

Outlook

Quantum-symplectic duality

- Schrodinger equation and symplectic mechanics
- Unitary and symplectic evolution
- Qubits and Symbits
- Euler-Bernoulli Eq. Elasticity theory. Vibrating beam, plates.

Quantum/Symplectic computer

- Unitary group $U(N)$ and symplectic group $Sp(2N,\mathbb{R})$
- NOT and $\gamma(NOT)$ gates

Conclusion

KID KARA KERKER E KORO

Quantum-symplectic duality

I. Volovich [Quantum Dynamics as Classical Dynamics and Quantum/Symplectic Computers](#page-0-0) 4 September 2024 1

イロト イ母 トイミト イミト・ニヨー つくべ

Schrodinger equation and symplectic mechanics

- Main message: Schrodinger equation actually describes the classical symplectic Hamiltonian system.
- Euler-Bernoulli Eq. Elasticity theory. Vibrating beam, plates
- Quantum/Symplectic computer
- \bullet
- Compare:

wave-particle duality Einstein(photons)-de Broglie(matter waves),...

イロト イ御 ト イヨ ト イヨ トー ヨ

 Ω

Schrodinger equation and symplectic mechanics

• Hilbert space

$$
\mathcal{H}=\mathbb{C}^\mathbb{N}
$$

(1)

KORK SERVER (SHIKING)

• Schrodinger equation *(SE)* ${\rm i}\dot{\psi}_{\rm a} = {\rm H}_{\rm ab}\psi_{\rm b}$ $\mathbf{a}, \mathbf{b} = 1...N, \psi_{\mathbf{a}} \in \mathbb{C}, \quad \mathbf{H}_{\mathbf{a}\mathbf{b}} = \mathbf{H}_{\mathbf{b}\mathbf{a}}$ (2)

Schrodinger equation in real variables

- $\phi_a = \mathbf{q}_a + i \mathbf{p}_a$, where q_a, p_a are real.
- $H_{ab} = K_{ab} + iL_{ab}$
- $K_{ab} = K_{ba}$, $L_{ab} = -L_{ba}$ matrices with real entries. Then SE:

$$
\dot{\mathbf{q}_a} = \mathbf{K}_{ab} \mathbf{p}_b + \mathbf{L}_{ab} \mathbf{q}_b \tag{3}
$$
\n
$$
\dot{\mathbf{p}_a} = -\mathbf{K}_{ab} \mathbf{q}_b + \mathbf{L}_{ab} \mathbf{p}_b(*) \tag{4}
$$

KID KARA KEDIKEDI ELI KORO

Schrodinger equation in real variables

(*) are classical symplectic Hamiltonian equations

$$
\dot{\mathbf{q}}_{\mathbf{a}} = \frac{\partial \mathbf{H}_{\mathbf{sym}}}{\partial \mathbf{p}_{\mathbf{a}}},
$$

$$
\dot{\mathbf{p}}_{\mathbf{a}} = -\frac{\partial \mathbf{H}_{\mathbf{sym}}}{\partial \mathbf{q}_{\mathbf{a}}},
$$
(5)

with the Hamiltonian

$$
H_{sym}=\frac{1}{2}(p_aK_{ab}\,p_b+q_aK_{ab}\,q_b)+p_aL_{ab}\,q_b
$$

Remark 1.

If the Hamiltonian equation in the Schrodinger equations depends on time

$$
\mathbf{i}\dot{\psi}_{\mathbf{a}} = \mathbf{H}_{\mathbf{a}\mathbf{b}}(\mathbf{t})\psi_{\mathbf{b}}\tag{6}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君 ○ Ю Q ⊙

with

$$
\mathbf{H}_{\mathbf{a}\mathbf{b}}(\mathbf{t}) = \mathbf{K}_{\mathbf{a}\mathbf{b}}(\mathbf{t}) + \mathbf{i}\mathbf{L}_{\mathbf{a}\mathbf{b}}(\mathbf{t}),\tag{7}
$$

then we get the following equation

$$
\dot{\mathbf{q_a}} = \mathbf{K_{ab}(t)}\mathbf{p_b} + \mathbf{L_{ab}(t)}\mathbf{q_b}
$$

$$
\dot{\mathbf{p_a}} = -\mathbf{K_{ab}(t)}\mathbf{q_b} + \mathbf{L_{ab}(t)}\mathbf{p_b}
$$

the Hamiltonian equation

$$
H_{\mathbf{sym}}(\mathbf{t})=\frac{1}{2}(\mathbf{p_a}K_{\mathbf{a}\mathbf{b}}(\mathbf{t})\,\mathbf{p_b}+\mathbf{q_a}K_{\mathbf{a}\mathbf{b}}(\mathbf{t})\,\mathbf{q_b})+\mathbf{p_a}L_{\mathbf{a}\mathbf{b}}\,\mathbf{q_b}.
$$

I. Volovich [Quantum Dynamics as Classical Dynamics and Quantum/Symplectic Computers](#page-0-0) 4 September 2024 6 /

Quantum mechanics

Schrodinger equation

$$
\mathbf{i}\dot{\psi} = \mathbf{H}\psi
$$
 (8)
where $\mathbf{H} = \frac{d^2}{dx^2} + \mathbf{V}(\mathbf{x})$

$$
\ddot{\mathbf{\Psi}} + \mathbf{H}^2 \mathbf{\Psi} = \mathbf{0}
$$
 (9)

$$
\mathbf{\Psi} = \mathbf{q} + i\mathbf{p}
$$
 (10)

$$
\ddot{\mathbf{q}} + \mathbf{H}^2 \mathbf{q} = \mathbf{0}, \qquad \mathbf{q} = \mathbf{q}(\mathbf{x}, \mathbf{t})
$$
 (11)

イロト イ団 トイミト イミト ニヨー つんぴ

Elasticity theory

Euler-Bernoulli vibrating beam eq.

$$
\rho \ddot{\mathbf{W}} + \frac{\mathbf{d}^2}{\mathbf{dx}^2} (\mathbf{K}(\mathbf{x}) \frac{\mathbf{d}^2}{\mathbf{dx}^2} \mathbf{W}) = \mathbf{0}
$$
(12)

$$
k_t \mathbf{W} = \mathbf{W} \mathbf{W} \mathbf{W}
$$

$$
k_s \mathbf{W} \mathbf{W} \mathbf{W}
$$

$$
\mathbf{W} \mathbf{W} \mathbf{W}
$$

$$
\mathbf{W} \mathbf{W} \mathbf{W}
$$

K ロ ▶ K 個 ▶ K 聖 ▶ K 聖 ▶ │ 聖 │ めぬひ │

Vibrating plates

$$
\rho \ddot{\mathbf{y}} + \mathbf{K}_1 \Delta \mathbf{y} + \mathbf{K}_2 \Delta \Delta \mathbf{y} = 0 \tag{13}
$$

- Euler-Bernoulli 1650 year beam
- Eiffel Tower

$$
\ddot{\mathbf{W}} + \frac{\mathbf{d}^4}{\mathbf{dx}^4} \mathbf{W} = \mathbf{0} \tag{14}
$$

Schrodinger equation for free particle

$$
\mathbf{i}\dot{\Psi} = -\frac{\mathbf{d}^2}{\mathbf{dx}^2}\Psi\tag{15}
$$

KORK SERVER (SHIKING)

Symplectic space

- Symplectic space is a pair (V, ω)
- \bullet V real vector space, ω q-summetric non-degenerate bilinear form
- Symplectic group is group if linear transformation (V) which preserves ω
- Example: $\mathbb{R}(2N)$ there exist the standart symplectic structure which is given by the matrix

$$
\left(\begin{array}{cc} \mathbf{0} & \mathbf{iN} \\ -\mathbf{iN} & \mathbf{0} \end{array}\right) \tag{16}
$$

KORK SERVER (SHIKING)

• The correcsponding symplectic group is denote $Sp(2N, \mathbb{R})$

- Relation between representations of solutions of the Schrodinger/Hamiltonian equations in the complex unitary form and the real symplectic form.
- The solution of the N-component Schrodinger equation

 $\psi(t) = U_t \psi(0), \qquad \psi(t) = (\psi_1(t),...\psi_N(t)),$

in term of real N-component vectors $\psi(t) = q(t) + ip(t)$.

KID KARA KEDIKEDI ELI KORO

• Representing the unitary matrix U_t in the form $U_t = X_t + iY_t$, where X_t and Y_t are real matrices, we have

$$
\psi(\mathbf{t})=\mathbf{X}_{\mathbf{t}}\mathbf{q}(0)-\mathbf{Y}_{\mathbf{t}}\mathbf{p}(0)+i(\mathbf{Y}_{\mathbf{t}}\mathbf{q}(0)+\mathbf{X}_{\mathbf{t}}\mathbf{p}(0)),
$$

i.e. $q(t) = X_t q(0) - Y_t p(0)$, $p(t) = Y_t q(0) + X_t p(0)$ (#)

• Relations $(\#)$ can be represented in the form

$$
\begin{pmatrix} q(t) \\ p(t) \end{pmatrix} = S_t \begin{pmatrix} q(0) \\ p(0) \end{pmatrix}, \quad S_t = \begin{pmatrix} X_t & Y_t \\ -Y_t & X_t \end{pmatrix}
$$

KID KARA KEDIKEDI ELI KORO

• The unitarity of matrix U_t ,

$$
\mathbf{U}_{\mathbf{t}}^* \mathbf{U}_{\mathbf{t}} = (\mathbf{X}_{\mathbf{t}}^{\mathbf{T}} - \mathbf{i}\mathbf{Y}_{\mathbf{t}}^{\mathbf{T}})(\mathbf{X}_{\mathbf{t}} + \mathbf{i}\mathbf{Y}_{\mathbf{t}})
$$
(17)
= $\mathbf{X}_{\mathbf{t}}^{\mathbf{T}} \mathbf{X}_{\mathbf{t}} + \mathbf{Y}_{\mathbf{t}}^{\mathbf{T}} \mathbf{Y}_{\mathbf{t}} - \mathbf{i}(\mathbf{Y}_{\mathbf{t}}^{\mathbf{T}} \mathbf{X}_{\mathbf{t}} - \mathbf{X}_{\mathbf{t}}^{\mathbf{T}} \mathbf{Y}_{\mathbf{t}}) = \mathbf{I}$ (18)

イロト イ母 トイミト イミト・ニヨー つくべ

means that

$$
\mathbf{X}_t^{\mathbf{T}} \mathbf{X}_t + \mathbf{Y}_t^{\mathbf{T}} \mathbf{Y}_t = \mathbf{I},
$$

$$
\mathbf{Y}_t^{\mathbf{T}} \mathbf{X}_t - \mathbf{X}_t^{\mathbf{T}} \mathbf{Y}_t = \mathbf{0} \ (*)
$$

• Indeed,

$$
\mathbf{S}_t^T \mathbf{J} \mathbf{S}_t = \left(\begin{array}{cc} \mathbf{X}_t^T \mathbf{Y}_t - \mathbf{Y}_t^T \mathbf{X}_t & \mathbf{Y}_t^T \mathbf{Y}_t + \mathbf{X}_t^T \mathbf{X}_t \\ - \mathbf{Y}_t^T \mathbf{Y}_t - \mathbf{X}_t^T \mathbf{X}_t & - \mathbf{Y}_t^T \mathbf{X}_t + \mathbf{X}_t^T \mathbf{Y}_t \end{array} \right)
$$

and taking into account (*) we get

$$
\mathbf{S}_t^T\mathbf{J}\mathbf{S}_t=\left(\begin{array}{cc}0&I\\-I&0\end{array}\right),\quad i.e.\,(*)
$$

I. Volovich [Quantum Dynamics as Classical Dynamics and Quantum/Symplectic Computers](#page-0-0) 4 September 2024 14 / 27

イロト イ母 トイミト イミト・ニヨー つくべ

Qubits and Symbits

- In quantum computing, the fundamental unit of information is the qubit.
- The qubit is a two-level quantum system, mathematically represented by the complex Hilbert space \mathbb{C}^2 .
- A general state of a qubit can be written as:

$$
|\psi\rangle = \alpha|\mathbf{0}\rangle + \beta|\mathbf{1}\rangle, \quad \alpha, \beta \in \mathbb{C}, \quad |\alpha|^2 + |\beta|^2 = 1,
$$

 $|0\rangle$ and $|1\rangle$ form an orthonormal basis for \mathbb{C}^2

 $\alpha, \beta \in \mathbb{C}$

Qubits and Symbits

- In the symplectic computing framework, the analogous concept to a qubit is a symplectic bit (symbit).
- A symbit is represented by a two-dimensional real vector space \mathbb{R}^2 .
- A general state of a symbit can be written as:

$$
|\phi\rangle = \alpha|\mathbf{0}\rangle + \beta|\mathbf{1}\rangle, \quad \alpha, \beta \in \mathbb{R}, \quad \alpha^2 + \beta^2 = \mathbf{1}, \tag{19}
$$

KID KARA KENYEN E YORO

where $|0\rangle$ and $|1\rangle$ form an orthonormal basis for \mathbb{R}^2 .

- The coefficients α and β here are real numbers such that the total probability is equal to one.
- We can interpret \mathbb{R}^2 as the phase plane for a dynamical system with coordinates p and q .

Quantum mechanics over real number and Kahler space

 \bullet If $\langle .,.\rangle$ is inner product in the complex Hilbert space then

$$
[\langle.,.\rangle] = (\langle.,.\rangle) + i\omega
$$
 (20)

- where $(\langle \ldots \rangle)$ is positive defined and ω skew-symmetric
- Kahler space (V, J, ω) . V is a real vector space, J is a complex structure, $J^2 = -1$ and $\omega(., J.)$ is positive defined.

Tensor products of N sbits

• Tensor products of N sbits:

$$
\mathbb{R}^2 \otimes \mathbb{R}^2 \otimes \cdots \otimes \mathbb{R}^2 = \mathbb{R}^{2^N}.
$$
 (21)

K ロ ト K 御 ト K ヨ ト K ヨ ト ニヨ

 Ω

This is equivalent to \mathbb{C}^N .

- \bullet On the other hand, the tensor product of N $\operatorname{qubits} \ \text{is} \ \mathbb{C}^{2^N}.$
- Therefore, by using tensor products of sbits, one can obtain more general spaces than those obtained from tensor products of qubits.

Tensor products of N sbits

- Operations on symbits are performed using symplectic transformations, which are elements of the symplectic group $Sp(2,\mathbb{R})$.
- For instance, the simplest symplectic transformation in \mathbb{R}^2 can be represented by a 2×2 matrix S that preserves the symplectic form:

$$
S^T J S = J, \quad \text{where} \quad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

An example of a symplectic transformation is the rotation matrix:

$$
R(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix},
$$

KID KARA KENYEN E YORO

which preserves the symplectic form and hence is a member of $Sp(2,\mathbb{R})$.

Tensor products of N sbits

In summary, while qubits are the basic units of quantum information in \mathbb{C}^2 and are manipulated using unitary transformations, symbits are the basic units of symplectic information in \mathbb{R}^2 and are manipulated using symplectic transformations. This duality provides a bridge between quantum and symplectic computing, offering a new perspective on computational processes.

K ロ ト K 御 ト K ヨ ト K ヨ ト ニヨ

 QQ

Quantum/Symplectic computer

- Quantum computer is a sequence of unitary transformations (gates) and projectors (measurements)
- Symplectic computer is a sequence of symplectic transformations and projectors

٠

$$
U(N) = Sp(2N, \mathbb{R}) \bigcap O(2N, \mathbb{R})
$$
 (22)

KID KAPIK KEIK EI YORO

Unitary and symplectic gates

- Unitary group $U(N)$ and symplectic group $Sp(2N,\mathbb{R})$
- Let us show that unitary group $U(N)$ is a subgroup of symplectic group $Sp(2N, \mathbb{R})$. Let us remind that a symplectic matrix S of symplectic group $Sp(2N, \mathcal{R})$ satisfies the relation

$$
S^T J S = J \tag{23}
$$

KID KAPIK KEIK EI YORO

where

$$
J = \left(\begin{array}{cc} 0 & I \\ -I & 0 \end{array}\right). \tag{24}
$$

Unitary and symplectic gates

- Unitary group $U(N)$ and symplectic group $Sp(2N,\mathbb{R})$
- Let S is a $2N \times 2N$ matrix in the form

$$
S=\left(\begin{array}{cc}A&B\\C&D\end{array}\right)
$$

- where A, B, C, D are $N \times N$ matrices. The conditions on A, B, C and D are
	- $A^{\mathrm{T}}C, B^{\mathrm{T}}D$ symmetric, and $A^{\mathrm{T}}D-C^{\mathrm{T}}B=I$
	- AB^{T} , CD^{T} symmetric, and $AD^{\mathrm{T}} BC^{\mathrm{T}} = D$

Unitary and symplectic gates

- • Let us show that there is a canonical mapping γ of the unitary group $U(N)$ to $Sp(2N, \mathbb{R})$. Let $V \in U(N)$, we present V in the form
	- $V = X+iY$, where X, Y are $N \times N$ with real entries (25)
	- We define γ by the following formula

$$
\gamma(V) = \gamma(X + iY) = \begin{pmatrix} X & Y \\ -Y & X \end{pmatrix} \tag{26}
$$

 $2Q$

One can check that the unitarity conditions $VV^* = V^*V = 1$ lead to the conditions for the symplectic matrices. イロト イ団 トイヨト イヨト ニヨー

Remarks

- Remark 2 One can also check that there is a relation $\gamma(V_1)\gamma(V_2) = \gamma(V_1V_2)$.
- Remark 3. The Schrodinger equation in the form

$$
i\dot{\psi} = H \psi,\tag{27}
$$

where

$$
H = -\Delta + V(x) \tag{28}
$$

 Δ is the Laplace operator in R, in the real formulation looks as follows

$$
\dot{q} = Hp, \qquad \dot{p} = -Hq. \tag{29}
$$

Spectrum and scattering theory for in this approach are considered in [?[\]](#page-25-0) **ALEXALEX LE VOICE**

NOT and $\gamma(NOT)$ gates

- Quantum computation is a sequence of unitary matrices (gates) of the simple form. We put into correspondence into such unitary gate a corresponding symplectic gate using the γ defined by [\(26\)](#page-25-1).
- See the simplest gate is NOT. It is a unitary matrix $NOT = \left(\begin{array}{cc} 0 & 1 \ -1 & 0 \end{array} \right)$ defined on the qubit $\mathbb{C}^2.$ By using the mapping γ we define the corresponding symplectic gate

$$
\gamma(NOT) = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}
$$
 (30)

イロト イ団ト イミト イミト ニヨー つんぴ

One can construct the symplectic analog of the controlling CNOT gate.

Conclusions

- Quantum-Symplectic duality
- Schrodinger equation in is equivalent to Euler-Bernauli equation for vibrating beam and elasticity theory.
- Symplectic computer is proposed