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QM is one of the cornerstones of modern physics 

Many pressing questions: 

• Collapse of the wave function

• The status of an observer

• Born rule (why is the wavefunction squared probability?)

• Determinism vs non-determinism 

• Quantum theory of spacetime 

In almost 100 years we have not made any satisfactory progress 

We need something radically different!  

Current state-of-the-art in QMCurrent state-of-the-art in QM



Quantum mechanics from information Quantum mechanics from information 



Statement  Statement  

Humans discovered quantum mechanics when they discovered counting 

(though perhaps they were not aware of it) 



Tension Tension 

We learn about our world by doing measurements  

Every conceivable measurement can be reduced to counting

                                        however

Our physical Laws are formulated as differential equations (continuity) 

This is not simply a matter of improving precision or collecting more data

It is a fundamental difference between our experience of the physical world

and the theories we use to model those experiences



Information Information 

There is very little or no content/information if you have only one element 

You need at least two basis elements to convey meaningful information

                                          

                                               Say 0 and 1
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Binary sequences Binary sequences 

Fundamental objects are base-2 (binary) sequences of length n

The most irreducible way to encode information

Label all such sequences with S1(n):

𝑌𝑎𝑛𝑔
𝑌𝑖𝑛

𝑌𝑎𝑛𝑔
𝑌𝑎𝑛𝑔
𝑌𝑖𝑛

𝑌𝑎𝑛𝑔

 =  …

𝑇𝑟𝑢𝑒
𝐹𝑎𝑙𝑠𝑒
𝑇𝑟𝑢𝑒
𝑇𝑟𝑢𝑒
𝐹𝑎𝑙𝑠𝑒
𝑇𝑟𝑢𝑒

 =

1
0
1
1
0
1

 =

+
−
+
+
−
+
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0
0
0
0
0
0

,

1
0
0
0
0
0

, 

0
1
0
0
0
0

 , … , 

1
1
0
0
0
1

 , … , 

1
1
1
1
1
1

∈  S1(6)



• If we divide a system into small subsystems

• Very little information is in the small subsystems

• All the information is in the correlations between the systems

   
(alphabet has only 26 symbols, correlations between the letters crucial)

D. N. Page, Phys. Rev. Lett. 71, 1291 (1993)

Lecture from quantum statistical mechanics Lecture from quantum statistical mechanics 



Relationships between the sequences Relationships between the sequences 

0
0
1
1
0
0

 =

1
0
0
1
0
1

 ⊗ 

Set S2
 (n) is the set of all relationships between two sequences

1 0
0
0
1
0
1

0
1
1
0
0

s1 ∈  S1 s′1 ∈  S1 s1 ⊗ s′1 ∈  S2

Define:     0 0 ≡ A    1 1 ≡ B     1 0 ≡ C    0 1 ≡ D

≡

𝐶
𝐴
𝐷
𝐵
𝐴
𝐶

Set S2
 (n) is therefore comprised of base-4 sequences



Relationships between the sequences Relationships between the sequences 

0
0
1
1
0
0

 ⊗ 

0
0
1
1
0
1

 =

1
0
0
1
0
1

 ⊗ 

Set S3
 (n) is made of base-8 sequences

We could keep going – S4
 (n) , S5

 (n) …

s1 ⊗ s′1 ⊗ s′′1 ∈  S3

Set S3
 (n) is the set of all relationships between three sequences

1 0 0
0 0 0
0 1 1
1 1 1
0 0 0
1 0 1

000

001

010

011

100

110

101

111

Basis



Counts and measures Counts and measures 

0
0
1
1
0
0

 =

1
0
0
1
0
1

 ⊗ 

• Set S2
 (n) is the set of all relationships between two sequences

1 0
0
0
1
0
1

0
1
1
0
0

≡

𝐶
𝐴
𝐷
𝐵
𝐴
𝐶

• Number of times a particular base-4 basis element appears is a count.

• Label the counts as ෩𝑨, ෩𝑩, ෩𝑪, ෩𝑫

• Obviously

෩𝑨 = 𝟐, ෩𝑩 = 𝟏, ෩𝑪 = 𝟐, ෩𝑫 = 𝟏

෩𝑨 + ෩𝑩 + ෩𝑪 + ෩𝑫 = 𝒏



Measures Measures 

𝒋 = 2 ⇒  ෩𝑪 + ෩𝑫 = 𝟒 ⇒  ෩𝑪 = 𝟒, ෩𝑫 = 𝟎 ⇒  ෩𝑪 − ෩𝑫 = 𝟒, 𝟐, 𝟎, −𝟐, −𝟒
                                                     ෩𝑪 = 𝟑, ෩𝑫 = 𝟏
                                                       ෩𝑪 = 𝟐, ෩𝑫 = 𝟐 − 𝟐 ≤ 𝒎 ≤ 𝟐 
                                                       ෩𝑪 = 𝟏, ෩𝑫 = 𝟑
                                                      ෩𝑪 = 𝟎, ෩𝑫 = 𝟒

   

0 0 ≡ A    1 1 ≡ B     1 0 ≡ C    0 1 ≡ D

1  𝒋 =
෩𝑪+෩𝑫

𝟐
2  𝒎 =

෩𝑪−෩𝑫

𝟐
 

3  𝒈 =
෩𝑨+෩𝑩

𝟐
4  𝒍 =

෩𝑨−෩𝑩

𝟐
 

 

with −𝑗 ≤ 𝑚 ≤ 𝑗         −𝑔 ≤ 𝑙 ≤ 𝑔



Measures j and m:   quantum numbersMeasures j and m:   quantum numbers

1  𝒋 =
෩𝑪+෩𝑫

𝟐
2  𝒎 =

෩𝑪−෩𝑫

𝟐
 

  with −𝑗 ≤ 𝑚 ≤ 𝑗

j   looks like the total angular momentum quantum number

m  looks like  the z-component of the angular momentum    

If counts ෩𝑪 and ෩𝑫 are given in units of  ℏ



Measures label all sequences  Measures label all sequences  

• Label sequences with numbers j,m,g,l

• More than one sequence with the same numbers

s2
j,m,g,l  ∈  S2(j, m, g, l)

s2
3/2,1/2,3/2,1/2 =

𝐶
𝐴
𝐷
𝐵
𝐴
𝐶

s2
3/2,1/2,3/2,1/2 =

𝐴
𝐶
𝐵
𝐷
𝐴
𝐶

• Degeneracy is determined by permutations of elements  

j,m,g,l  is a complete set of measures (up to permutations)

𝒋 =
෩𝑪+෩𝑫

𝟐
            𝒎 =

෩𝑪−෩𝑫

𝟐
 

𝒈 =
෩𝑨+෩𝑩

𝟐
           𝒍 =

෩𝑨−෩𝑩

𝟐



Elementary particles: states labeled with   j and mElementary particles: states labeled with   j and m

  with −𝑗 ≤ 𝑚 ≤ 𝑗

• Elementary particles are states labeled with  j  and m

• Particles are not fundamental objects

Particles are correlations between the sequences! 

s2
j,m,g,l  ∈  S2(j, m, g, l)

Ian Cuming / Getty Images



Referent sequence Referent sequence 

0
0
1
1
0
0

 =

1
0
0
1
0
1

 ⊗ 

Look again at the product of two sequences 

1 0
0
0
1
0
1

0
1
1
0
0

≡

𝐶
𝐴
𝐷
𝐵
𝐴
𝐶

𝑠1
0 ⊗ 𝑠𝑗,𝑚,𝑔,𝑙

1 = 𝑠𝑗,𝑚,𝑔,𝑙
2

Call the s1
0

   sequence on the left – the referent sequence

If we keep the referent sequence fixed, we can assign j,m,g,l to all S1 sequences

Sequence on the left looks at the sequence to the right and sees measures j,m,g,l

The orientation is important due to the asymmetry of C = 10 and D = 01 basis

                                                                                                               

𝑠3
2

,
1
2

,
3
2

,
1
2

2

𝑠1
0 ⊗ 𝑠𝑗,𝑚,𝑔,𝑙

1  →  𝑠𝑗,−𝑚,𝑔,𝑙
∗1  ⊗ 𝑠1

0 



Referent sequence Referent sequence 

Referent sequence plays the role of an observer, or vacuum
(everything is defined with respect to it)  

Observer is an integral part of the system!



Referent sequence Referent sequence 

1
0
0
1
0
1

 =

1
0
0
1
0
1

 ⊗ 

When the referent sequence looks at itself it cannot see C and D, 

so j=m=0

1 1
0
0
1
0
1

0
0
1
0
1

≡

𝐵
𝐴
𝐴
𝐵
𝐴
𝐵

𝑠1
0 ⊗ 𝑠0

1 = 𝑠0,0,𝑔,𝑙
2

Vacuum must be a scalar (does not carry any angular momentum)!

𝑠 0,0,3,0 
2



QM rules for angular momentum addition  QM rules for angular momentum addition  

Place the reference sequence  s1
0

  in the middle                                                                                                               

What happens when  𝑠𝑗
1
,𝑚

1
,𝑔

1
,𝑙

1
 

1 looks at 𝑠𝑗
2
,𝑚

2
,𝑔

2
,𝑙

2

1  ?   

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏
 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝒋

𝟐
,𝒎

𝟐
,𝒈

𝟐
,𝒍

𝟐

𝟏      ∈  S3

Directed graph: three vertices and three directed edges

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝒋

𝟐
,𝒎

𝟐
,𝒈

𝟐
,𝒍

𝟐

𝟏  = s3
J,M,G,L



QM rules for angular momentum addition  QM rules for angular momentum addition  

Three sequences

Define:   

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏
 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝒋

𝟐
,𝒎

𝟐
,𝒈

𝟐
,𝒍

𝟐

𝟏  = s3
J,M,G,L

0 0 ≡ A    1 1 ≡ B     1 0 ≡ C    0 1 ≡ D𝑠1
0 ⊗ 𝑠𝑗,𝑚,𝑔,𝑙

1 = 𝑠𝑗,𝑚,𝑔,𝑙
2

000

001

010

011

100

110

101

111

Basis

𝑴 =
𝟏

𝟐
( ෪𝟏𝟎𝟎 + ෪𝟏𝟏𝟎  − ෪𝟎𝟎𝟏  − ෪𝟎𝟏𝟏)

L =
𝟏

𝟐
( ෪𝟎𝟎𝟎 + ෪𝟎𝟏𝟎  − ෪𝟏𝟏𝟏 − ෪𝟏𝟎𝟏)

𝒈 =
෩𝑨 + ෩𝑩

𝟐
 

J =
𝟏

𝟐
( ෪𝟏𝟎𝟎 + ෪𝟏𝟏𝟎 + ෪𝟎𝟎𝟏 + ෪𝟎𝟏𝟏)

G =
𝟏

𝟐
( ෪𝟎𝟎𝟎 + ෪𝟎𝟏𝟎 + ෪𝟏𝟏𝟏 + ෪𝟏𝟎𝟏)

Two sequences   

𝒎 =
෩𝑪 − ෩𝑫

𝟐
 

𝒍 =
෩𝑨−෩𝑩

𝟐
 

𝒋 =
෩𝑪 + ෩𝑫

𝟐



Relationships between measuresRelationships between measures

J =
𝟏

𝟐
( ෪𝟏𝟎𝟎 + ෪𝟏𝟏𝟎 + ෪𝟎𝟎𝟏 + ෪𝟎𝟏𝟏)

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏
 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝒋

𝟐
,𝒎

𝟐
,𝒈

𝟐
,𝒍

𝟐

𝟏  = s 3J,M,G,L

𝒔𝟏,𝟎,𝟏,−𝟏
 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝟏

𝟐
,+

𝟏

𝟐
,
𝟑

𝟐
,−

𝟏

𝟐

𝟏  = s 3J,M,G,L

1 1 0
1 1 1

[1] 0 0
[0] 1 1

For example

One possibility                 [ ] is element that contributes

                                                                 - they do not overlap 

𝒋𝟏 = 𝟏 →  
𝟏

𝟐
෩𝑪𝟏 + ෩𝑫𝟏 = 𝟏 𝒋𝟐 =

𝟏

𝟐
 →  

𝟏

𝟐
෩𝑪𝟐 + ෩𝑫𝟐 =

𝟏

𝟐

[0] 1 0
1 1 1

[1] 0 0
1 1 1

Another possibility                                        [ ] is element that contributes

                                                                       - they do overlap 

𝑱 = 𝒋𝟏 + 𝒋𝟐 =
𝟑

𝟐

𝑱 = 𝒋𝟏 + 𝒋𝟐 − 𝟏 =
𝟏

𝟐

In general  |𝒋𝟏 − 𝒋𝟐| ≥ 𝑱 ≤ 𝒋𝟏 + 𝒋𝟐



This is a non-deterministic relation (typical for quantum mechanics)

|𝒋𝟏 − 𝒋𝟐| ≥ 𝑱 ≤ 𝒋𝟏 + 𝒋𝟐

Non-determinism is a direct consequence of obscuring  

information about the exact composition of a sequence!

Non-determinism  Non-determinism  



Relationships between measuresRelationships between measures

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏
 

∗𝟏 ⊗  𝒔𝟏
𝟎 ⊗ 𝒔𝒋

𝟐
,𝒎

𝟐
,𝒈

𝟐
,𝒍

𝟐

𝟏  = s 3J,M,G,L

The reference sequence contributes a 0 basis element to the A and D basis elements

While it contributes a 1 basis element to both the B and C basis elements.

Number of zeros in the referent sequence is ෨00 ሚ𝐴 + ෩𝐷 = ෨00   

Number of ones in the referent sequence is ෨10  ෨𝐵 + ሚ𝐶 = ෨10

     

0 0 ≡ A    1 1 ≡ B     1 0 ≡ C    0 1 ≡ D𝑠1
0 ⊗ 𝑠𝑗,𝑚,𝑔,𝑙

1 = 𝑠𝑗,𝑚,𝑔,𝑙
2

Use 𝒎 =
෩𝑪 − ෩𝑫

𝟐

And get     𝐌 = 𝒎𝟏 + 𝒎𝟐 

Conservation law (not imposed by hand)!



Ontic vs Epistemic statesOntic vs Epistemic states

• Epistemic states are observed in experiments (by us humans) 

• Ontic states are underlying reality (not possible to observe) 

Epistemic state of a particle is labeled by (j,m)

Ontic states are ensembles of base-4 sequences labeled by j,m,g,l 

A state with  j=1/2  (e.g. electron ) is described by the set   𝑠
𝑗=

1

2
,𝑚,𝑔,𝑙

2

𝑠
𝑗=

1

2
,𝑚,𝑔,𝑙

2 = 𝛼 𝑠
𝑗=

1

2
,𝑚=+

1

2
,𝑔,𝑙

2 + 𝛽𝑠
𝑗=

1

2
,𝑚=−

1

2
,𝑔,𝑙

2

Electron wavefunction

The more sequences we have with  given j and m, 

the greater probability to obtain this state in a given process

 𝝍 ⟩  = 𝜶 ↑ ⟩  + 𝜷 | ↓ ⟩



Counting functionCounting function

Assign  Φ 𝑗, 𝑚, 𝑔, 𝑙    to each sequence with  given j,m,g,l 

Counting function counts all the distinct sequences with the same j,m,g,l

Define the counting function  Φ 𝑗, 𝑚, 𝑔, 𝑙 =
𝑛!

෩𝑨!෩𝑩! ෩𝑪!෩𝑫!
   

permutations with repetition

s2
3/2,1/2,3/2,1/2 =

𝐶
𝐴
𝐷
𝐵
𝐴
𝐶

Φ 3/2,1/2,3/2,1/2 =
6!

෩𝟐!෩𝟏! ෩𝟐!෩𝟏!
 =180



Clebsch-Gordan coefficientsClebsch-Gordan coefficients

CG coefficients are densely packed with very important physics

Unfortunately, this is not so obvious within the formalism of QM

Explicit direct sum decomposition of the tensor product of two irreducible representations  into 

irreducible representations, in cases where the numbers and types of irreducible components are 

already known abstractly.  Wikipedia



Clebsch-Gordan coefficientsClebsch-Gordan coefficients

When adding two angular momenta, 

Probability distribution is given by the Clebsch-Gordan coefficients

𝑱 = 𝒋𝟏 + 𝒋𝟐, 𝒋𝟏 + 𝒋𝟐 − 𝟏, … , |𝒋𝟏 − 𝒋𝟐|

 𝐽𝑀 =  

𝑚1=−𝑗1

𝑗1



𝑚2=−𝑗2

𝑗2

𝑗1𝑚1𝑗2𝑚2 𝑗1𝑚1𝑗2𝑚2  𝐽𝑀⟩

Clebsch-Gordan coefficients

𝑗1 = 𝑗2 = 1

2 0 =
1

6
1 1 1 − 1 +

2

6
1 0 10 +

1

6
|1 − 1 1 1⟩ 

𝐽 = 2, 𝑀 = 0e.g.                           one possibility is 

Probability amplitudes  - CG coefficients 



Clebsch-Gordan coefficientsClebsch-Gordan coefficients

To deal with CG coefficients, in addition to counting function,

we have to introduce   PATHS and MAPS 

istockphoto



PathsPaths

Path is defined by initial 𝑠𝑗𝑖,𝑚𝑖,𝑔𝑖,𝑙𝑖

2  and final 𝑠𝑗𝑓,𝑚𝑓,𝑔𝑓,𝑙𝑓 
2 sequence

Total number of paths is simply  a product 

𝑠𝑗𝑖,𝑚𝑖,𝑔𝑖,𝑙𝑖

2  →  𝑠𝑗𝑓,𝑚𝑓,𝑔𝑓,𝑙𝑓

2                                        

Φpath  =  Φ 𝑗𝑖 , 𝑚𝑖 , 𝑔𝑖 , 𝑙𝑖  Φ 𝑗𝑓 , 𝑚𝑓 , 𝑔𝑓 , 𝑙𝑓

𝐴
𝐴
𝐶
𝐵
𝐵
𝐴

 

𝐵
𝐴
𝐴
𝐵
𝐵
𝐷



MapsMaps

Map connects initial and final sequence using addition modulo 2 

𝑠𝑗𝑖,𝑚𝑖,𝑔𝑖,𝑙𝑖

2  ۩ 𝑠𝑚𝑎𝑝 
2  =  𝑠𝑗𝑓,𝑚𝑓,𝑔𝑓,𝑙𝑓

2

0 ۩ 0 = 0         1 ۩ 1 = 0
  0 ۩ 1 = 1 1 ۩ 0 = 1 

𝐵
𝐴
𝐶
𝐴
𝐴
𝐷

 =

𝐴
𝐴
𝐶
𝐵
𝐵
𝐴

 ۩ 

𝐵
𝐴
𝐴
𝐵
𝐵
𝐷

𝑠1
2,+

1
2 

,
5
2,+

1
2 

2 ۩ 𝑠1,0,2,1 = 
2  𝑠1

2,−
1
2,

5
2,−

1
2 

2

𝐴 ۩𝐴 = 00 ۩ 00 = 00 = 𝐴
 𝐴 ۩ 𝐵 = 00 ۩ 11 = 11 = 𝐵 … 



CGCs can be interpreted as measurements by two different observers

Particle (J,M,G,L) decays into j1 measured by Alice and j2 measured by Bob  

Clebsch-Gordan coefficientsClebsch-Gordan coefficients

𝒋𝟏, 𝒎𝟏 𝒋𝟐, 𝒎𝟐

𝒔𝒋
𝟏
,𝒎

𝟏
,𝒈

𝟏
,𝒍

𝟏
 

𝟐

𝒔𝑨𝒍𝒊𝒄𝒆
 

𝟐

𝒋𝟐, 𝒎𝟐, 𝒈𝟐, 𝒍𝟐

J,M,G,L
𝒔𝒋𝟐,𝒎𝟐,𝒈𝟐,𝒍𝟐

 

𝟐

𝒔𝑩𝒐𝒃
 

𝟐

𝒋𝟏, 𝒎𝟏, 𝒈𝟏, 𝒍𝟏

J,M,G,L

Alice measures j1,m1 and knowing J,M infers all the possibilities Bob could see σ ΦB(𝑘0𝐵) 

Bob measures j2,m2 and knowing J,M infers all the possibilities Alice could see σ ΦA(𝑘0𝐴) 

Re-localization: Map Alice into Bob (they compare the notes)                    

𝒌𝟎 = ෪𝟎𝟏𝟎

Φ𝑝𝑎𝑡ℎ = σ 𝑒𝑖 𝑘0𝐴−𝑘0𝐵 𝜋 Φ𝐴(𝑘0𝐴)ΦB(𝑘0𝐵) 

is a non-local element – cannot be determined from   J,M, j1,m1, j2,m2 …

𝑘0𝐴, 𝑘0𝐵

interference!

J,M

Alice                            Bob



Normalize to get the CGCs

Clebsch-Gordan coefficientsClebsch-Gordan coefficients

CGC 2 =
Φ𝑝𝑎𝑡ℎ

σ  Φ𝑝𝑎𝑡ℎ 
= 

𝑚1, 𝑚2

| 𝑗1𝑚1𝑗2𝑚2  𝑗1𝑗2𝐽𝑀⟩|2



Comparison with QMComparison with QM

Difference between our formalism and QM as a function of n

CGC 2 =
Φ𝑝𝑎𝑡ℎ

σ  Φ𝑝𝑎𝑡ℎ 
= 

Δ → 0 𝑎𝑠 𝑛 → ∞ 

                    𝑚1 = ±1,  𝑚2 = ∓1 

𝑚1 = 0, 𝑚2 = 0 

𝑗1 = 1, 𝑗2 = 1, 𝐽 = 1, 𝑀 = 0 



Quantum mechanics is  𝑛 → ∞  limit of this formalism? 



Clebsch-Gordan coefficientsClebsch-Gordan coefficients

• We reduced QM probability to counting permutations (no Born rule)

• It is now clear that we have to square the wavefunction to get probability 

CGC  contain all the QM – probabilities, interference, non-locality!                    

CGC 2 =
Φ𝑝𝑎𝑡ℎ

σ  Φ𝑝𝑎𝑡ℎ 
𝑚1, 𝑚2



How do space and time emerge?How do space and time emerge?

• We derived all the results so far without any reference to spacetime

• We need input from experiments to proceed 



RotationsRotations

First step toward emergent spacetime!First step toward emergent spacetime!



Two sequential Stern-Gerlach experiments  Two sequential Stern-Gerlach experiments  

Two events

Event 1 occurs at Alice’s detector which deflects j = 1/2 particle into one of two paths 

Bob then rotates his detector with respect to Alice’s by the angle θab. 

Event 2 occurs at Bob’s detector which deflects  j = 1/2 particle into one of two paths



Two sequential Stern-Gerlach experiments  Two sequential Stern-Gerlach experiments  

• If Alice measures the spin projection m, what is the probability for 

Bob to measure m′, if his apparatus is rotated by an angle θ?

• For 100 years there was only one way to answer this question (QM)

• Now there are two!



QM prediction QM prediction 

Wigner’s d-matrix formula:

Given total spin j and initial spin projection m, the probability of 

observing m′, under relative rotation of spatial frames by θ, is



Modeling Rotations Modeling Rotations 

Thus, maps between Alice and Bob can contain only A’s and B’s

Require Alice and Bob to see the same value of j, but m can change                          

𝜽𝒂𝒃 ≡
෩𝑩𝒎𝒂𝒑

𝒏
𝝅

Angle



Example  n=2Example  n=2

Alice observes                                        and we rotate by θab = π/2 

We then apply all possible maps associated with n = 2 and θab = π/2

Bob measures                       with equal probability (50% each)

If we rotate by θab = π   i.e. 
𝐵
𝐵

 ,  then  𝒎𝒃 = −
𝟏

𝟐
   with 100% probability

                                   Matches QM predictions

𝒎𝒂 = +
𝟏

𝟐
 , 𝒍𝒂 = +

𝟏

𝟐

𝒎𝒃 = ±
𝟏

𝟐
 

𝒎𝒃 = +
𝟏

𝟐
𝒎𝒃 = −

𝟏

𝟐
 𝒎𝒂 = +

𝟏

𝟐
 , 𝜽𝒂𝒃 ≡

෩𝑩𝒎𝒂𝒑

𝒏
𝝅



Getting a general expression  Getting a general expression  

Experiment consists of an event at Alice’s and Bob’s detectors

Ontic states are ordered pairs of base-4 sequences:

(or 4-point correlations between base-2 sequences)

They are base-16 sequences comprised of the following symbols:

{AA,AB,AC,AD,BA,BB,BC,BD,CA,CB,CC,CD,DA,DB,DC,DD}

Since rotation maps can contain only the symbols A and B

Basis for ontic states of this experiment is:

{AA,AB,BA,BB,CC,CD,DC,DD}        There is 8 of them

𝐴 𝐶
𝐴
𝐶
𝐵
𝐴
𝐷

𝐷
𝐷
𝐴
𝐵
𝐵

Alice   Bob 



Converting quantum numbers into base-8  counts Converting quantum numbers into base-8  counts 

Since Alice is on the left and Bob is on the right 

Alice’s and Bob’s counts in terms of base-8 counts

{AA,AB,BA,BB,CC,CD,DC,DD}

are 

 ෪𝐶𝑎 = ෪𝐶𝐶 + ෪𝐶𝐷     ෪𝐷𝑎 = ෪𝐷𝐶 + ෪𝐷𝐷   

 ෪𝐶𝑏 = ෪𝐶𝐶 + ෪𝐷𝐶     ෪𝐷𝑏 = ෪𝐶𝐷 + ෪𝐷𝐷 

 …

𝐴 𝐶
𝐴
𝐶
𝐵
𝐴
𝐷

𝐷
𝐷
𝐴
𝐵
𝐵

Alice   Bob 

𝒋𝒂 = 𝒋𝒃 =
෪𝑪𝒂+ ෪𝑫𝒂

𝟐
=

෪𝑪𝒃+ ෪𝑫𝒃

𝟐
=

෪𝑪𝑪+ ෪𝑪𝑫+ ෪𝑫𝑪+ ෪𝑫𝑫

𝟐
          

  𝒎𝒂 =
෪𝑪𝒂− ෪𝑫𝒂

𝟐
=

෪𝑪𝑪+ ෪𝑪𝑫− ෪𝑫𝑪− ෪𝑫𝑫

𝟐
        𝒎𝒃 =

෪𝑪𝒃− ෪𝑫𝒃

𝟐
=

෪𝑪𝑪+ ෪𝑫𝑪− ෪𝑪𝑫− ෪𝑫𝑫

𝟐

Quantum numbers



Non-local quantum numbersNon-local quantum numbers

We can write 7 quantum numbers 𝒏, 𝒋, 𝒎𝒂, 𝒎𝒃, 𝒍𝒂, 𝒍𝒃, 𝜽𝒂𝒃 
in terms of basis

 {AA,AB,BA,BB,CC,CD,DC,DD}

We need the 8th one. Define  

𝝁𝒂,𝒃 =
෪𝑪𝑫 + ෪𝑫𝑪 + ෪𝑨𝑨 + ෪𝑩𝑩

𝟐

• 𝝁𝒂,𝒃 is a non-local quantum number (property of the whole experiment) 

• Not associated with Alice’s and Bob’s events, nor with the map

• Alice’s and Bob’s ensembles can disagree about their values  



Probability is proportional to cardinality  Probability is proportional to cardinality  

𝒏 = 𝟒, 𝒋 =
𝟏

𝟐
, 𝒎𝒂 =

𝟏

𝟐
, 𝒎𝒃 =

𝟏

𝟐
, 𝒍𝒂 =

𝟏

𝟐
, 𝒍𝒃 =

𝟏

𝟐
, 𝜽𝒂𝒃 =

𝝅

𝟐
, 𝝁𝒂𝒃 =

𝟏

𝟐

For each unique combination of eight quantum numbers,

εa and εb  are ontic states where Alice’s (Bob’s) event is held fixed

𝝐𝒂 =
෪𝑨𝒂! 

෪𝑩𝒂! 
෪𝑪𝒂! 

෪𝑫𝒂! 

෪𝑨𝑨! ෪𝑨𝑩! ෪𝑩𝑨! ෪𝑩𝑩! ෪𝑪𝑪! ෪𝑪𝑫! ෪𝑫𝑪! ෪𝑫𝑫!
 𝝐𝒃 =

෪𝑨𝒃! 
෪𝑩𝒃! 

෪𝑪𝒃! 
෪𝑫𝒃 !

෪𝑨𝑨! ෪𝑨𝑩! ෪𝑩𝑨! ෪𝑩𝑩! ෪𝑪𝑪! ෪𝑪𝑫! ෪𝑫𝑪! ෪𝑫𝑫!

Cardinality of εa and εb 

Combined cardinality                                                  number of paths𝝐𝒂⨂𝝐𝒃 = 𝝐𝒂||𝝐𝒃  



Interference  Interference  

𝒏 = 𝟔, 𝒋 = 𝟏, 𝒎𝒂 = 𝟎, 𝒎𝒃 = 𝟎, 𝒍𝒂 = 𝟎, 𝒍𝒃 = 𝟏, 𝜽𝒂𝒃 =
𝝅

𝟐

Pairs in Alice’s and Bob’s ensembles can have different 𝝁𝒂𝒃



𝝁𝒂𝒃
𝒂 ,𝝁𝒂𝒃

𝒃

−𝟏  
𝚫𝝁𝒂𝒃 𝝐𝒂(𝝁𝒂𝒃

𝒂 )||𝝐𝒃(𝝁𝒂𝒃
𝒃 )

• Pairs with an odd value of 𝚫𝝁𝒂𝒃  annihilate pairs with an even value

Interference! 𝚫𝝁𝒂𝒃 related to q from Wigner’s d-matrix 



Total Probability  Total Probability  

ϒ is the total cardinality                             after we account for 

interference and sum up over l’s

Finally, the probability is given as:

• Compare P with  QM predictions (Wigner’s d-matrix formula)

𝝐𝒂⨂𝝐𝒃 = 𝝐𝒂||𝝐𝒃

𝑷 𝒎𝒃 𝒏, 𝒋 =
𝟏

𝟐
, 𝒎𝒂, 𝜽𝒂𝒃) =

𝚼 𝒏, 𝒋 =
𝟏
𝟐

, 𝒎𝒂, 𝒎𝒃, 𝜽𝒂𝒃

σ𝒎𝒃
𝚼 𝒏, 𝒋 =

𝟏
𝟐

, 𝒎𝒂, 𝒎𝒃, 𝜽𝒂𝒃



Spin 1 particles  Spin 1 particles  

n = 100, j = 1, ma = +1 (left), and ma = 0 (right), while Δ is the difference



Optical systemsOptical systems

• Optical systems are much easier to work with than spin systems

• Work with photon number states (Fock states) 

𝝉𝒂𝒃 = 𝐜𝐨𝐬𝟐(
෩𝑩𝒎𝒂𝒑

𝒏

𝝅

𝟐
)• Photon beam splitter with transmittance

• C's and D's can represent ladder operators n+ and n-

𝜽

𝟐



Results Results 

෪𝐶𝑎 = ෪𝐶𝐶 + ෪𝐶𝐷     ෪𝐷𝑎 = ෪𝐷𝐶 + ෪𝐷𝐷   
෪𝐶𝑏 = ෪𝐶𝐶 + ෪𝐷𝐶     ෪𝐷𝑏 = ෪𝐶𝑎 + ෪𝐷𝑎 − ෪𝐶𝑏

෪𝐶𝑎 + ෪𝐷𝑎 = ෪𝐶𝑏 + ෪𝐷𝑏Impose conservation of the number of photons:

𝑷 ෪𝐶𝑏, ෪𝐷𝑏 𝒏, ෪𝐶𝑎, ෪𝐷𝑎 , 𝝉𝒂𝒃) =
𝚼 𝒏, ෪𝐶𝑎, ෪𝐷𝑎, ෪𝐶𝑏, 𝝉𝒂𝒃

σ෪𝐶𝑏
𝚼 𝒏, ෪𝐶𝑎, ෪𝐷𝑎, ෪𝐶𝑏, 𝝉𝒂𝒃

Difference goes down with n, but does not disappear (like in CGC) 



Results Results 

There is always a difference between our formalism and QM for finite n

• If rotations are involved, further difference is present 

• Perhaps  because spacetime is not classical like in QM

• I.e. rotations are probabilistic  



Summary Summary 

We derived angular momentum rules in QM from binary sequences 

Also analogs of CGC and Wigner’s d-matrix formula

 

Along the way we learned:

• Particles are relationships between the sequences (emergent phenomena)  

• Obscuring information about the sequences leads to non-determinism

• World is non-deterministic if we (humans) see particles and fields 

• For a super-observer seeing sequences, world is deterministic

• Observer (reference sequence) is an integral part of the system



Summary Summary 

• We reduced QM probabilities to counting

• Counting unit is
ℏ

𝟐
  which perhaps explains  

1

2
  in Δ𝑝Δ𝑥 ≥

ℏ

2
 

    (also accommodates fermions)

• It is clear that we have to square the WF to get probability in QM

• To recover QM, limit  𝑛 → ∞  is required

    (opens the door to test this formalism)  

• Precise quantum optics experiments may find deviations from QM



NextNext

To see how space and time arise in this formalism 

• We already found a way to describe rotations is space 

• Need to add translations in space and translations in time

• Emergent spacetime!



Trillion-dollar question Trillion-dollar question 

Do we live in a simulation??? 

  Possible, but not necessary...

© Warner Bros. Pictures
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