
  Tensor Gauge Field Theory  
and  

Extension of Chern-Simons Form   

George Savvidy 
Demokritos National Research Centre, Athens, Greece

11th Mathematical Physics Meeting  
Belgrade, Serbia 

2-6 September 2024 



1. Interaction of non-Abelian tensor gauge fields  
     Arm.J.Math. 1 (2008) 1-17                                                   G.S. 
2. Extension of the Poincaré Group and Non-Abelian Tensor Gauge Fields 
 Int.J.Mod.Phys.A 25 (2010) 5765-5785                              G.S 
3. Extensions of the Poincare group. 
    J.Math.Phys. 52 (2011) 072303                                             I.Antoniadis, L.Brink, G.S. 
——————- 
4. Topological mass generation in four-dimensional gauge theory.  
     Phys.Lett.B 694 (2011) 65-73                                               G.S. 
5. New gauge anomalies and topological invariants in various dimensions. 
    Eur.Phys.J.C 72 (2012) 2140                                                  I.Antoniadis and G.S. 
6. Extension of Chern-Simons forms and new gauge anomalies. 
    Int.J.Mod.Phys.A 29 (2014) 1450027                                     I.Antoniadis and G.S.  
7. Extension of Chern-Simons forms. 
    J.Math.Phys. 55 (2014) 062304                                              S.Konitopoulos and G.S.  
8. Asymptotic freedom of non-Abelian tensor gauge fields. 
    Phys.Lett.B 732 (2014) 150-155                                              G.S.  
9. Generalisation of the Yang-Mills Theory. 
    Int.J.Mod.Phys.A 31 (2016) 1630003                                       G.S.  
    International Conference on 60 Years of Yang-Mills Gauge Field Theories 
——————- 
10. Lars Brink Colleague, Friend and Collaborator                      G.S.

Publications     



Extension of the Poincaré Group 

Representations and Killing Metric 

Non-Abelian Tensor Gauge Fields 

Transformation of Tensor Gauge Fields  

The Lagrangian 

Interactions and Asymptotic Freedom 

Callan-Simanzik beta function 

Topological Mass Generation 

Topological invariants in various dimensions 

Transgression and Secondary Forms  

Extension of Chern-Simons Forms - CSAS



Extension of the Poincaré Algebra     

2 Extension of the Poincaré Algebra

As we already explained in the introduction, the gauge fields are defined as rank-(s + 1)
tensors [4, 5, 6] (the Abelian fields are considered in [1, 18, 19, 20, 21, 22, 24, 25, 26])

Aa
µλ1...λs

(x), s = 0, 1, 2, ...

and are totally symmetric with respect to the indices λ1...λs. A priory the tensor fields
have no symmetries with respect to the first index µ .The index a numerates the generators
La of the Lie algebra L(G).

One can think of these tensor fields as appearing in the expansion of the extended
gauge field Aµ(x, L) over the generators Lλ1...λs

a [6]:

Aµ(x, L) =
∞
∑

s=0

1

s!
Aa

µλ1...λs
(x) Lλ1...λs

a . (10)

The gauge field Aa
µλ1...λs

carries indices a,λ1, ...,λs labeling the generators of the extended
Poincaré algebra L(P) associated with a compact Lie group G. It has infinitely many
generators Lλ1...λs

a and the corresponding ”current” algebra is given by the commutator
[6]:

[Lλ1...λi

a , Lλi+1...λs

b ] = ifabcL
λ1...λs

c . (11)

Because the generators Lλ1...λs

a are space-time tensors, they do not commute with the
generators of the Poincaré algebra P µ, Mµν . They act on the space-time components of
the above generators as follows [7, 8]:

[P µ, P ν ] = 0, (12)

[Mµν , P λ] = i(ηλν P µ − ηλµ P ν),

[Mµν , Mλρ] = i(ηµρ Mνλ − ηµλ Mνρ + ηνλ Mµρ − ηνρ Mµλ),

[P µ, Lλ1...λs

a ] = 0, (13)

[Mµν , Lλ1...λs

a ] = i(ηλ1νLµλ2...λs

a − ηλ1µLνλ2...λs

a + ...+ ηλsνLλ1...λs−1µ
a − ηλsµLλ1...λs−1ν

a ),

[Lλ1...λi

a , Lλi+1...λs

b ] = ifabcL
λ1...λs

c (µ, ν, ρ,λ = 0, 1, 2, 3; s = 0, 1, 2, ...), (14)

where the flat space-time metric is ηµν = diag(+1,−1,−1,−1). One can check that all
Jacoby identities are satisfied and we have an example of a fully consistent algebra. The
commutation relations of the Lorentz generators Mµν correspond to the pseoudoorthogo-
nal algebra SO(1, 3). The algebra L(P) incorporates the Poincaré algebra and an internal
algebra L(G) in a nontrivial way, which is different from the direct product. Specifically
the generators Lλ1...λs

a have a nonzero commutation relation with Mµν , which means that
the generators of this new symmetry have nontrivial Lorentz transformation and that
they have a spin different from zero. They will then relate states of different spins. The
algebra is invariant with respect to the following gauge transformations:

Lλ1...λs

a → Lλ1...λs

a +
∑

1

P λ1Lλ2...λs

a

Mµν → Mµν , P λ → P λ, (15)
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group in which gauge parameters are totally symmetric tensors ξa
λ1···λs

(x).4–6 The
extended gauge transformations form a group P which is in fact a mixture of the
space–time and internal symmetries.7,8 Indeed, the commutator of two such gauge
transformations can be expressed in the form4–6

[δη, δξ]Aµλ1λ2···λs = gδζAµλ1λ2···λs ,

where the gauge parameters ζa
λ1···λs

(x) are defined by the following equations:

ζa = fabcηbξc ,

ζa
λ1

= fabc(ηbξc
λ1

+ ηb
λ1
ξc) ,

ζa
λ1λ2

= fabc
(
ηbξc

λ1λ2
+ ηb

λ1
ξc
λ2

+ ηb
λ2
ξc
λ1

+ ηb
λ1λ2

ξc
)
.

· · ·

(1)

This is the algebra of our main concern. Because the gauge parameters ξa
λ1···λs

(x)
have internal and space–time indices they transform nontrivially under both groups.
To grasp the structure of this algebra let us consider the first line of the above
equation. It encodes the structure of the internal Lie algebra [La, Lb] = ifabcLc and
we have to ask: what is the structure of the algebra which is behind the rest of the
equations? Let us introduce for that a translationally invariant commuting vector
variable eλ and define an infinite set of new generators as follows:6

Lλ1···λs
a = eλ1 · · · eλs ⊗ La , s = 0, 1, 2, . . . . (2)

These generators carry space–time and internal indices and transform under the
operations of both groups. The algebra of these generators6

[
Lλ1···λi

a , Lλi+1···λs

b

]
= ifabcL

λ1···λs
c , s = 0, 1, 2, . . . (3)

encodes all Eqs. (1) into a universal one ζ(L) = −i[η(L), ξ(L)], where the gauge
parameters are unified into one function ζ(x, L) =

∑
s

1
s!ζ

a
λ1···λs

(x) Lλ1···λs
a .

The “current” algebra (1)–(3) is not yet completely defined because it does not
specify how new generators Lλ1···λs

a transform under the space–time transforma-
tions. Taking into account that the generators Lλ1···λs

a are translationally invariant
tensorsa of the rank s one can suggest the following extension of the Poincaré
algebra:7,8

[Pµ, P ν ] = 0 ,

[Mµν , Pλ] = i
(
ηλνPµ − ηλµP ν

)
,

[Mµν , Mλρ] = i
(
ηµρMνλ − ηµλMνρ + ηνλMµρ − ηνρMµλ

)
,

[Pµ, Lλ1···λs
a ] = 0 ,

[Mµν , Lλ1···λs
a ] = i

(
ηλ1νLµλ2···λs

a − · · ·− ηλsµLλ1···λs−1ν
a

)
,

[
Lλ1···λi

a , Lλi+1···λs

b

]
= ifabcLλ1···λs

c (µ, ν, ρ,λ = 0, 1, 2, 3; s = 0, 1, 2, . . .) .

(4)

aThey inherited this property from the vector variable eµ in (2).
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The first three commutators define the Poincaré algebra as its subalgebra. The
next two commutators tell that the generators Lλ1···λs

a are translationally invariant
tensors of rank s and the last commutator defines the “current” subalgebra (3).
One can check that all Jacobi identities are satisfied and we have an example of
fully consistent algebra, which we shall call an extended Poincaré algebra LG(P)
associated with a compact Lie group G. This extension of the Poincaré algebra is
consistent with the Coleman–Mandula theorem2,3 because it has infinitely many
generators and states.

As far as the algebra is formulated one can now abstract oneself from the path
which led to it and begin studying its properties and representations. First of all
it is a “gauge invariant” extension of the Poincaré algebra in a sense that if one
defines a “gauge” transformation of its generators as

Lλ1···λs
a → Lλ1···λs

a +
∑

1

Pλ1Lλ2···λs
a +

∑

2

Pλ1Pλ2Lλ3···λs
a + · · · + P λ1 · · ·PλsLa ,

then one can check that the algebra LG(P) remains intact. And secondly, as we
shall see below the matrix representations of this algebra are transversal in the
sense that:

Pλ1L
λ1···λs
a = 0 . (5)

The Casimir operators of the algebra include P 2 and the square of the Pauli–
Lubanski vector wµ = 1

2ε
µνλρPν Mλρ. The matrix representations of the extended

Poincaré generators Lλ1···λs
a are expressible in terms of translationally invariant

Pauli–Lubanski vector wµ in one case and in terms of its invariant derivative ŵµ in
another. In the later case the generators of the gauge group are transversal to the
momentum and the representation takes the form

L⊥λ1···λs
a = ŵλ1 · · · ŵλs ⊗ La . (6)

These symmetric generators are transversal, spacelike tensors carrying the
helicities:b

h = ±s , ±(s − 2) , ±(s − 4), . . . (7)

because each vector ŵλi is a transversal Pµŵµ = 0, commuting [ŵµ, ŵν ] = 0,
translationally invariant [P µ, ŵν ] = 0 and purely spatial unit vector ŵ2 = −1
carrying helicities h = ±1. The generators L⊥λ1···λs

a are projecting the components
of the non-Abelian tensor gauge field Aa

µλ1···λs
into the plane transversal to the

momentum:

Aa
µλ1···λs

L⊥λ1···λs
a ,

bThe total spin quantum number of a symmetrical collection of s unit spins ranges from s, through
s − 2, s − 4, . . . , terminating at 1 or 0 as s is odd or even.
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The first three commutators define the Poincaré algebra as its subalgebra. The
next two commutators tell that the generators Lλ1···λs

a are translationally invariant
tensors of rank s and the last commutator defines the “current” subalgebra (3).
One can check that all Jacobi identities are satisfied and we have an example of
fully consistent algebra, which we shall call an extended Poincaré algebra LG(P)
associated with a compact Lie group G. This extension of the Poincaré algebra is
consistent with the Coleman–Mandula theorem2,3 because it has infinitely many
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As far as the algebra is formulated one can now abstract oneself from the path
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it is a “gauge invariant” extension of the Poincaré algebra in a sense that if one
defines a “gauge” transformation of its generators as
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a +
∑
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Pλ1Lλ2···λs
a +
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Pλ1Pλ2Lλ3···λs
a + · · · + P λ1 · · ·PλsLa ,

then one can check that the algebra LG(P) remains intact. And secondly, as we
shall see below the matrix representations of this algebra are transversal in the
sense that:

Pλ1L
λ1···λs
a = 0 . (5)

The Casimir operators of the algebra include P 2 and the square of the Pauli–
Lubanski vector wµ = 1

2ε
µνλρPν Mλρ. The matrix representations of the extended

Poincaré generators Lλ1···λs
a are expressible in terms of translationally invariant

Pauli–Lubanski vector wµ in one case and in terms of its invariant derivative ŵµ in
another. In the later case the generators of the gauge group are transversal to the
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a = ŵλ1 · · · ŵλs ⊗ La . (6)

These symmetric generators are transversal, spacelike tensors carrying the
helicities:b

h = ±s , ±(s − 2) , ±(s − 4), . . . (7)

because each vector ŵλi is a transversal Pµŵµ = 0, commuting [ŵµ, ŵν ] = 0,
translationally invariant [P µ, ŵν ] = 0 and purely spatial unit vector ŵ2 = −1
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a are projecting the components
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µλ1···λs
into the plane transversal to the

momentum:
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µλ1···λs

L⊥λ1···λs
a ,

bThe total spin quantum number of a symmetrical collection of s unit spins ranges from s, through
s − 2, s − 4, . . . , terminating at 1 or 0 as s is odd or even.
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components of the above generators as7,8

[Pµ, P ν ] = 0 ,

[Mµν , Pλ] = i(ηλνPµ − ηλµP ν) ,

[Mµν , Mλρ] = i
(
ηµρMνλ − ηµλMνρ + ηνλMµρ − ηνρMµλ

)
,

(11)

[
Pµ, Lλ1···λs

a

]
= 0 ,

[
Mµν , Lλ1···λs

a

]
= i
(
ηλ1νLµλ2···λs

a − ηλ1µLνλ2···λs
a

+ · · · + ηλsνLλ1···λs−1µ
a − ηλsµLλ1···λs−1ν

a
)
,

(12)

[
Lλ1···λi

a , Lλi+1···λs

b

]
= ifabcL

λ1···λs
c (µ, ν, ρ,λ = 0, 1, 2, 3; s = 0, 1, 2, . . .) , (13)

where the flat space–time metric is ηµν = diag(+1,−1,−1,−1). One can check that
all Jacobi identities are satisfied and we have an example of a fully consistent alge-
bra. The commutation relations of the Lorentz generators Mµν correspond to the
pseudoorthogonal algebra SO(1, 3). The algebra LG(P) incorporates the Poincaré
algebra and an internal algebra LG(G) in a nontrivial way, which is different from
the direct product. Specifically the generators Lλ1···λs

a have a nonzero commutation
relation with Mµν , which means that the generators of this new symmetry have
nontrivial Lorentz transformation and that they have a spin different from zero.
They will then relate states of different spins. The algebra is invariant with respect
to the following gauge transformations:

Lλ1···λs
a → Lλ1···λs

a +
∑

1

Pλ1Lλ2···λs
a

+
∑

2

Pλ1Pλ2Lλ3···λs
a + · · · + P λ1 · · ·PλsLa ,

Mµν → Mµν , Pλ → P λ ,

(14)

where the sums
∑

1,
∑

2, . . . are over all inequivalent index permutations.
It is worthy to compare the above extension of the Poincaré algebra with the

super-Poincaré algebra which is defined as follows:9–14

[Pµ, P ν ] = 0 ,

[Mµν , Pλ] = i(ηλνPµ − ηλµP ν) ,

[Mµν , Mλρ] = i
(
ηµρMνλ − ηµλMνρ + ηνλMµρ − ηνρMµλ

)
,

(15)

[Pµ, Θi
α] = 0 , [Mµν , Θi

α] =
i

2
(γµνΘi)α , γµν =

1
2
[γµ, γν ] , (16)

{Θi
α, Θj

β} = −2δij(γµC)αβPµ , i = 1, . . . , N . (17)
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Both algebras have Poincaré algebra (11), (15) as subalgebra. The next two commu-
tators (12) and (16) express the fact that the extended generators Θi

α and Lλ1···λs
a

are translationally invariant operators and carry a nonzero spin. The last com-
mutators (13) and (17) are essentially different in both of the algebras, in super-
Poincaré algebra the generators Θi

α anticommute to the operator P µ, while in our
case Lλ1···λs

a commute to themselves forming an infinite series of commutators of
“current” subalgebra (10) which cannot be truncated, so that the index s runs
from zero to infinity. We have here an example of an infinitely dimensional current
subalgebra.17

The algebra LG(P) has a simple representation of the following form (2):

Pµ = kµ ,

Mµν = i

(
kµ ∂

∂kν
− kν ∂

∂kµ

)
+ i

(
eµ ∂

∂eν
− eν ∂

∂eµ

)
,

Lλ1···λs
a = eλ1 · · · eλs ⊗ La ,

(18)

therefore it has at least one nontrivial representation. This representation appeared,
when we were considering the transformation properties of the non-Abelian tensor
gauge fields.4–6 Our aim now is to study the matrix representations of this algebra.

3. Matrix Representations of Extended Poincaré Algebra

The irreducible representation of the Poincaré subalgebra (11), (15) can be found
by the method of induced representations.25,26 This method consists of finding a
representation of the subgroup L of the Poincaré group called “little group” (see
App. A for the definition of the little group and the contraction of its representa-
tions) and boosting it up to a representation of the full group. For that one should
choose a fixed frame with momentum kµ = ω(1, 0, 0, 1) which satisfies k2 = 0 and
then find the subgroup L which leaves kµ intact and the representations of L on the
|kµ〉 states. One can induce this representation of L to the whole Poincaré group by
boosting the frame with momentum kµ to the one with an arbitrary momentum,
the result is independent of the choice of momentum kµ.25,26

Thus the subgroup L is a group of transformations which leave kµ = ω(1, 0, 0, 1)
invariant. Under the Lorentz group the action of the element

Uθ = exp
(

i

2
θµνMµν

)

creates an infinitesimal transformation kµ → θµ
νkν + kµ. Hence kµ = ω(1, 0, 0, 1) is

left invariant provided the parameters obey the relations

θ30 = 0 , θ10 + θ13 = 0 , θ20 + θ23 = 0 , (19)

therefore the little subalgebra L contains the generators

H = M12 , Π′ = −M10 + M13 ,

Π′′ = −M20 + M23 , Lλ1···λs
a , s = 0, 1, 2, . . .

(20)
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tensor. Therefore the generators Lλ1...λs
a realise a reducible representation of the Poincaré

algebra and each of them carries a spectrum of helicities, which we shall describe below.

The algebra LG(P) has representation in terms of differential operators of the following

general form:

P µ = kµ,

Mµν = i(kµ ∂

∂kν
− kν ∂

∂kµ
) + i(eµ

∂

∂eν
− eν

∂

∂eµ
),

Lλ1...λs
a = eλ1 ...eλs ⊗ La, (3.2)

where eλ is a translationally invariant space-like unite vector (2.2). The vector space of a

representation is parameterised by the momentum kµ and translationally invariant vector

variables eλ:

Ψ(kµ, eλ) . (3.3)

The irreducible representations can be obtained from (3.2) by imposing invariant con-

straints on the vector space of functions (3.3) of the following form [14, 22, 12, 13]:

k2 = 0, kµeµ = 0, e2 = −1 . (3.4)

These equations have a unique solution [14]

eµ = χkµ + eµ1 cosϕ+ eµ2 sinϕ, (3.5)

where eµ1 = (0, 1, 0, 0), eµ2 = (0, 0, 1, 0) when kµ = ω(1, 0, 0, 1). The χ and ϕ remain as

independent variables on the cylinder ϕ ∈ S1,χ ∈ R1. The invariant subspace of functions

(3.3) now reduces to the following form:

Ψ(kµ, eν) δ(k2) δ(k · e) δ(e2 + 1) = Φ(kµ,ϕ,χ). (3.6)

If we take into account (3.5) the generators Lλ1...λs
a = eλ1 ...eλs ⊗La, it takes the following

form:

L⊥ λ1...λs
a =

s
∏

n=1

(χkλn + eλn
1 cosϕ+ eλn

2 sinϕ)⊗ La. (3.7)

This is a purely transversal representation because of (3.4):

kλ1
L⊥λ1...λs
a = 0, s = 1, 2, ... (3.8)

6



of the helicities [50, 51, 52]:

h = ± (s+ 1),
±(s− 1)
±(s− 1)

,
±(s− 3)
±(s− 3)

, ...., (3.13)

where the lower helicity states have double degeneracy. The analysis of the kinetic terms

of the Lagrangian and of the corresponding equation of motions, which will be considered

in the next section, confirms that indeed the propagating degrees of freedom are described

by helicities (3.13).

In order to define the gauge invariant Lagrangian one should know the Killing metric

of the algebra LG(P). The explicit transversal representation of the LG(P) generators

given above (3.7), (3.10) and (3.11) allows to calculate the corresponding Killing metric

[50, 51, 53]:

LG : 〈La;Lb〉 = δab, (3.14)

LP : 〈P µ;P ν〉 = 0

〈Mµν ;Pλ〉 = 0 (3.15)

〈Mµν ;Mλρ〉 = ηµληνρ − ηµρηνλ

LG(P) : 〈P µ;L⊥ λ1...λs
a 〉 = 0,

〈Mµν ;L⊥ λ1...λs
a 〉 = 0, (3.16)

〈La;L
⊥ λ1

b 〉 = 0,

〈L⊥ λ1

a ;L⊥ λ2

b 〉 = δab η̄
λ1λ2 ,

〈La;L
⊥ λ1λ2

b 〉 = δab η̄
λ1λ2 ,

〈L⊥ λ1

a ;L⊥ λ2λ3

b 〉 = 0, (3.17)

.....................

〈L⊥ λ1...λn
a ;L⊥ λn+1....λ2s+1

b 〉 = 0, s = 0, 1, 2, 3, ...

〈L⊥ λ1...λn
a ;L⊥ λn+1....λ2s

b 〉 = δab s! (η̄
λ1λ2 η̄λ3λ4...η̄λ2s−1λ2s + perm),

where η̄λ1λ2 is the projector into the two-dimensional plane transversal to the momentum

kµ [30]:

η̄λ1λ2 =
kλ1 k̄λ2 + k̄λ1kλ2

kk̄
− ηλ1λ2 , kλ1

η̄λ1λ2 = kλ2
η̄λ1λ2 = 0, (3.18)
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in the definition of the gauge field Aµ(x, e). In transversal representation the tensor gauge

fields are projecting out into the plane transversal to the momentum and contain only

positive space-like components of a definite helicity.

In Section 4 we shall define the gauge transformation of the gauge fields, the field

strength tensors and the invariant Lagrangian. The kinetic term describes the propagation

of positive definite helicity states. The helicity spectrum of the propagating modes is

consistent with the helicity spectrum which appears in the projection of the tensor gauge

fields into transversal generators L⊥. The Lagrangian defines not only a free propagation

of tensor gauge bosons, but also their interactions. The interaction diagrams for the

lower-rank bosons are presented on Fig.1-2. The high-rank bosons interact through the

triple and quartic interaction vertices with a dimensionless coupling constant. In Section

5 we shall calculate and study the scattering amplitudes of the vector and tensor gauge

bosons and their splitting amplitudes by using spinor representation of the momenta and

polarisation tensors.

In Section 6 we shall consider a possibility that inside the proton and, more generally,

inside hadrons there are additional partons - tensorgluons, which can carry a part of

the proton momentum. We generalise the DGLAP equation which includes the splitting

probabilities of the gluons into tensorgluons and calculated the one-loop Callan-Simanzik

beta function. This contribution is negative and corresponds to the asymptotically free

theory. Considering the contribution of tensorgluons of all spins into the beta function

we found that it is leading to the theory which is conformally invariant at very high

energies. In Section 7 we observed that the unification scale at which standard coupling

constants are merging is shifted to lower energies. In conclusion we summarise the results

and discuss the challenges of the experimental verification of the suggested model.

2 Tensor Gauge Fields and Extended Poincaré Algebra

The gauge fields are defined as rank-(s+ 1) tensors [9, 10, 11]
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La of the Lie algebra LG of a compact Lie group G with totally antisymmetric structure

constants fabc.

The tensor fields (2.1) can be considered as the components of a composite gauge field

Aµ(x, e) which depends on additional translationally invariant space-like unite vector

[11, 15, 16, 17]:

eλe
λ = −1. (2.2)

A similar vector variable, in addition to the space-time coordinate x, was introduced

earlier by Yakawa [12], Fierz [13], Wigner[14], Ginzburg and Tamm [34, 37] and others

[40]. The variable eλ is also reminiscent to the Grassmann variable θ in supersymmetric

theories where the superfield Ψ(x, θ) depends on two variables x and θ [18, 19]. We shall

consider all tensor gauge fields (2.1) as the components appearing in the expansion over

the above mentioned vector variable [11]:

Aµ(x, e) =
∞
∑

s=0

1

s!
Aa

µλ1...λs
(x) Lae

λ1 ...eλs . (2.3)

The gauge field Aa
µλ1...λs

carries indices a,λ1, ...,λs which are labelling the generators

Lλ1...λs
a = Laeλ1 ...eλs of extended current algebra LG associated with the Lie algebra

LG [11, 50]. The algebra LG has infinitely many generators Lλ1...λs
a and is given by the

commutator [11, 50, 51]

[Lλ1...λk
a , L

λk+1...λs

b ] = ifabcL
λ1...λs
c , s = 0, 1, 2.... (2.4)

The generators Lλ1...λs
a commute to themselves forming an infinite series of commutators

of current algebra LG which cannot be truncated, so that the index s runs from zero to

infinity. Because the generators Lλ1...λs
a are space-time tensors, the full algebra should

include the Poincaré generators P µ, Mµν as well. This naturally leads to the extension

LG(P) of the Poincaré algebra LP [50, 51, 52]:

[P µ, P ν ] = 0,

[Mµν , P λ] = ηνλ P µ − ηµλ P ν,

[Mµν , Mλρ] = ηµρ Mνλ − ηµλ Mνρ + ηνλ Mµρ − ηνρ Mµλ,

[P µ, Lλ1...λs
a ] = 0,

[Mµν , Lλ1...λs
a ] = ηνλ1 Lµλ2...λs

a − ηµλ1 Lνλ2...λs
a + ... + ηνλs Lµλ1...λs−1

a − ηµλs Lνλ1...λs−1

a ,

[Lλ1...λk
a , L

λk+1...λs

b ] = ifabcL
λ1...λs
c . (2.5)
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LG(P) of the Poincaré algebra LP [50, 51, 52]:

[P µ, P ν ] = 0,

[Mµν , P λ] = ηνλ P µ − ηµλ P ν,

[Mµν , Mλρ] = ηµρ Mνλ − ηµλ Mνρ + ηνλ Mµρ − ηνρ Mµλ,

[P µ, Lλ1...λs
a ] = 0,

[Mµν , Lλ1...λs
a ] = ηνλ1 Lµλ2...λs

a − ηµλ1 Lνλ2...λs
a + ... + ηνλs Lµλ1...λs−1

a − ηµλs Lνλ1...λs−1

a ,

[Lλ1...λk
a , L

λk+1...λs

b ] = ifabcL
λ1...λs
c . (2.5)

4

La of the Lie algebra LG of a compact Lie group G with totally antisymmetric structure

constants fabc.

The tensor fields (2.1) can be considered as the components of a composite gauge field

Aµ(x, e) which depends on additional translationally invariant space-like unite vector

[11, 15, 16, 17]:

eλe
λ = −1. (2.2)

A similar vector variable, in addition to the space-time coordinate x, was introduced

earlier by Yakawa [12], Fierz [13], Wigner[14], Ginzburg and Tamm [34, 37] and others

[40]. The variable eλ is also reminiscent to the Grassmann variable θ in supersymmetric

theories where the superfield Ψ(x, θ) depends on two variables x and θ [18, 19]. We shall

consider all tensor gauge fields (2.1) as the components appearing in the expansion over

the above mentioned vector variable [11]:

Aµ(x, e) =
∞
∑

s=0

1

s!
Aa

µλ1...λs
(x) Lae

λ1 ...eλs . (2.3)

The gauge field Aa
µλ1...λs

carries indices a,λ1, ...,λs which are labelling the generators

Lλ1...λs
a = Laeλ1 ...eλs of extended current algebra LG associated with the Lie algebra

LG [11, 50]. The algebra LG has infinitely many generators Lλ1...λs
a and is given by the

commutator [11, 50, 51]

[Lλ1...λk
a , L

λk+1...λs

b ] = ifabcL
λ1...λs
c , s = 0, 1, 2.... (2.4)

The generators Lλ1...λs
a commute to themselves forming an infinite series of commutators

of current algebra LG which cannot be truncated, so that the index s runs from zero to

infinity. Because the generators Lλ1...λs
a are space-time tensors, the full algebra should
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and k̄µ = ω(1, 0, 0,−1). It follows then that the transversality conditions (3.8) are fulfilled:

kλi
〈L⊥ λ1...λn

a ;L⊥ λn+1....λ2s

b 〉 = 0, i = 1, 2, ...2s. (3.19)

The Killing metric on the internal LG and on the Poincaré LP subalgebras (3.14), (3.15)

are well known. The important conclusion which follows from the above result is that the

Poincaré generators P µ,Mµν are orthogonal to the gauge generators Lλ1...λs
a (3.16). The

last formulas (3.17) represent the Killing metric on the LG current algebra (2.4),(2.5) and

will be used in the definition of the Lagrangian in the next section. It should be stressed

that the metric (3.17) is defined modulo longitudinal terms. This is because under the

”gauge” transformation of the generators (3.1) the metric will receive terms which are

polynomial in momentum. The provided metric (3.17) is written in a particular gauge.

This peculiar property of the metric is mirrored in the definition of the Lagrangian which

can be written in different gauges. The spectrum of the propagating modes does not

depend on the gauges chosen, as one can get convinced by inspecting the expression

(3.12).

Notice that the reducible representation (3.2), without any of the constraints (3.4),

should also be considered, as well as the representation in which only the last constrain

in (3.4) is imposed. In that cases the transversality of the representation (3.19) will be

lost, but instead one arrives to the homogeneous Killing metric in (3.17) η̄λ1λ2 → ηλ1λ2

and the longitudinal terms which can be gauged away.

With this Killing metric in hands one can define the Lagrangian of the theory.

4 The Lagrangian

The gauge transformation of the field Aµ(x, e) is defined as [1, 11, 50]

A′

µ(x, e) = U(ξ)Aµ(x, e)U
−1(ξ)−

i

g
∂µU(ξ) U−1(ξ), (4.1)

where the group parameter ξ(x, e)

U(ξ) = eiξ(x,e)

has the decomposition [11, 50]

ξ(x, e) =
∑

s

1

s!
ξaλ1...λs

(x) Lae
λ1 ...eλs
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and ξaλ1...λs
(x) are totally symmetric gauge parameters. Using the commutator of the

covariant derivatives ∇ab
µ = (∂µ − igAµ(x, e))ab

[∇µ,∇ν ]
ab = gfacbGc

µν , (4.2)

we can define the extended field strength tensor

Gµν(x, e) = ∂µAν(x, e)− ∂νAµ(x, e)− ig[Aµ(x, e) Aν(x, e)], (4.3)

which transforms homogeneously:

G ′

µν(x, e)) = U(ξ)Gµν(x, e)U
−1(ξ). (4.4)

It is useful to have an explicit expression for the transformation law of the field components

[9, 10, 11]:

δAa
µ = (δab∂µ + gfacbAc

µ)ξ
b, (4.5)

δAa
µν = (δab∂µ + gfacbAc

µ)ξ
b
ν + gfacbAc

µνξ
b,

δAa
µνλ = (δab∂µ + gfacbAc

µ)ξ
b
νλ + gfacb(Ac

µνξ
b
λ + Ac

µλξ
b
ν + Ac

µνλξ
b),

......... . ............................

These extended gauge transformations generate a closed algebraic structure. The compo-

nent field strengths tensors take the following form [9, 10, 11]:

Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabc Ab

µ Ac
ν , (4.6)

Ga
µν,λ = ∂µA

a
νλ − ∂νA

a
µλ + gfabc( Ab

µ Ac
νλ + Ab

µλ Ac
ν ),

Ga
µν,λρ = ∂µA

a
νλρ − ∂νA

a
µλρ + gfabc( Ab

µ Ac
νλρ + Ab

µλ Ac
νρ + Ab

µρ Ac
νλ + Ab

µλρ Ac
ν ),

...... . ............................................

and transform homogeneously with respect to the transformations (4.5):

δGa
µν = gfabcGb

µνξ
c, (4.7)

δGa
µν,λ = gfabc( Gb

µν,λξ
c +Gb

µνξ
c
λ ),

δGa
µν,λρ = gfabc( Gb

µν,λρξ
c +Gb

µν,λξ
c
ρ +Gb

µν,ρξ
c
λ +Gb

µνξ
c
λρ ),

...... . ..........................
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The field strength tensors are antisymmetric in their first two indices and are totally

symmetric with respect to the rest of the indices. The symmetry properties of the field

strength Ga
µν,λ1...λs

remain invariant in the course of these transformations.

The first gauge invariant density is given by the expression [9, 10, 11]

L(x) = 〈L(x, e)〉 = −
1

4
〈Ga

µν(x, e)Gaµν(x, e)〉, (4.8)

where the trace of the generators is given in (3.17). One can get convinced that the

variation of the (4.8) with respect to the gauge transformations (4.1) and (4.4) vanishes:

δL(x, e) = −
1

2
Ga
µν(x, e) gf

abc Gbµν(x, e) ξc(x, e) = 0.

The invariant density (4.8) allows to extract gauge invariant, totally symmetric, tensor

densities Lλ1...λs(x) by using expansion with respect to the vector variable eλ:

L(x, e) =
∞
∑

s=0

1

s!
Lλ1...λs(x) e

λ1 ...eλs . (4.9)

In particular, the expansion term which is quadratic in powers of eλ is

Lλ1λ2
= −

1

4
Ga

µν,λ1
Ga

µν,λ2
−

1

4
Ga

µνG
a
µν,λ1λ2

. (4.10)

The gauge invariant density thus can be represented in the following form [9, 10, 11]:

L(x) = 〈L(x, e)〉 =
∞
∑

s=0

1

s!
Lλ1...λs(x) 〈eλ1 ...eλs〉 (4.11)

and the density for the lower-rank tensor fields is

L2 = −
1

4
Ga

µν,λG
a
µν,λ −

1

4
Ga

µνG
a
µν,λλ.

Let us consider the second gauge invariant density of the form [9, 10, 11]

L′

(x) = 〈L′

(x, e)〉 =
1

4
〈Ga

µρ1
(x, e)eρ1 Gaµ

ρ2
(x, e)eρ2〉′ . (4.12)

It is gauge invariant because its variation is also equal to zero:

δL′

(x, e) =
1

4
gfacb Gc

µρ1
(x, e)eρ1 ξb(x, e)Gaµ

ρ2
(x, e)eρ2 +

+
1

4
Ga
µρ1

(x, e)eρ1 gfacb Gcµ
ρ2
(x, e)eρ2 ξb(x, e) = 0. (4.13)
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The Lagrangian density (4.12) generates the second series of gauge invariant tensor den-

sities (L′

ρ1ρ2
)λ1...λs(x) when we expand it in powers of the vector variable eλ:

L′

(x) = 〈L′

(x, e)〉 =
∞
∑

s=0

1

s!
(L′

ρ1ρ2
)λ1...λs(x) 〈eρ1eρ2eλ1 ...eλs〉′. (4.14)

The term quartic in variable eλ after contraction of the vector variables takes the following

form:

L′

2 =
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ. (4.15)

One can get convinced that it is gauge invariant under the transformation (4.5) and (4.7).

The total Lagrangian density is a sum of two invariants (4.8) and (4.12):

L = L+ L′

= −
1

4
〈Ga

µν(x, e)Gaµν(x, e)〉+
1

4
〈Ga

µρ1
(x, e)eρ1 Gaµ

ρ2
(x, e)eρ2〉′. (4.16)

The Lagrangian for the lower-rank tensor gauge fields has the following form:

L = L1 + L2 + L′

2 + ... = −
1

4
Ga

µνG
a
µν (4.17)

−
1

4
Ga

µν,λG
a
µν,λ −

1

4
Ga

µνG
a
µν,λλ

+
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ + ...

The above Lagrangian defines the kinetic operators for the rank-1 Aa
µ and rank-2 Aa

µλ1

fields, as well as trilinear and quartic interactions with the dimensionless coupling constant

g (see Fig.1-2) .

As we found in [9, 10, 11], the corresponding free field equations coincide with the

equations introduces in the classical works [25, 26, 27] and describe the propagation of

the helicity-two and zero h = ±2, 0 massless charged tensor gauge bosons, and there are

no propagating negative norm states. This is in agreement with the spectrum presented

in (3.13). The next term in expansion of the Lagrangian density has the following form

[28, 29]:

L3 + L′

3 = −
1

4
Ga

µν,λρG
a
µν,λρ −

1

8
Ga

µν,λλG
a
µν,ρρ −

1

2
Ga

µν,λG
a
µν,λρρ −

1

8
Ga

µνG
a
µν,λλρρ +

+
1

3
Ga

µν,λρG
a
µλ,νρ +

1

3
Ga

µν,νλG
a
µρ,ρλ +

1

3
Ga

µν,νλG
a
µλ,ρρ + (4.18)

+
1

3
Ga

µν,λG
a
µλ,νρρ +

2

3
Ga

µν,λG
a
µρ,νλρ +

1

3
Ga

µν,νG
a
µλ,λρρ +

1

3
Ga

µνG
a
µλ,νλρρ
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(x) = 〈L′

(x, e)〉 =
∞
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ρ1ρ2
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L = L+ L′

= −
1

4
〈Ga

µν(x, e)Gaµν(x, e)〉+
1

4
〈Ga

µρ1
(x, e)eρ1 Gaµ

ρ2
(x, e)eρ2〉′. (4.16)

The Lagrangian for the lower-rank tensor gauge fields has the following form:

L = L1 + L2 + L′

2 + ... = −
1

4
Ga

µνG
a
µν (4.17)

−
1

4
Ga

µν,λG
a
µν,λ −

1

4
Ga

µνG
a
µν,λλ

+
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ + ...

The above Lagrangian defines the kinetic operators for the rank-1 Aa
µ and rank-2 Aa

µλ1

fields, as well as trilinear and quartic interactions with the dimensionless coupling constant

g (see Fig.1-2) .

As we found in [9, 10, 11], the corresponding free field equations coincide with the

equations introduces in the classical works [25, 26, 27] and describe the propagation of

the helicity-two and zero h = ±2, 0 massless charged tensor gauge bosons, and there are

no propagating negative norm states. This is in agreement with the spectrum presented

in (3.13). The next term in expansion of the Lagrangian density has the following form

[28, 29]:

L3 + L′

3 = −
1

4
Ga

µν,λρG
a
µν,λρ −

1

8
Ga

µν,λλG
a
µν,ρρ −

1

2
Ga

µν,λG
a
µν,λρρ −

1

8
Ga

µνG
a
µν,λλρρ +

+
1

3
Ga

µν,λρG
a
µλ,νρ +

1

3
Ga

µν,νλG
a
µρ,ρλ +

1

3
Ga

µν,νλG
a
µλ,ρρ + (4.18)

+
1

3
Ga

µν,λG
a
µλ,νρρ +

2

3
Ga

µν,λG
a
µρ,νλρ +

1

3
Ga

µν,νG
a
µλ,λρρ +

1

3
Ga

µνG
a
µλ,νλρρ

12

Lagrangian of Tensor Gauge Fields      

The Lagrangian density (4.12) generates the second series of gauge invariant tensor den-

sities (L′

ρ1ρ2
)λ1...λs(x) when we expand it in powers of the vector variable eλ:

L′

(x) = 〈L′

(x, e)〉 =
∞
∑

s=0

1

s!
(L′

ρ1ρ2
)λ1...λs(x) 〈eρ1eρ2eλ1 ...eλs〉′. (4.14)

The term quartic in variable eλ after contraction of the vector variables takes the following

form:

L′

2 =
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ. (4.15)

One can get convinced that it is gauge invariant under the transformation (4.5) and (4.7).

The total Lagrangian density is a sum of two invariants (4.8) and (4.12):

L = L+ L′

= −
1

4
〈Ga

µν(x, e)Gaµν(x, e)〉+
1

4
〈Ga

µρ1
(x, e)eρ1 Gaµ

ρ2
(x, e)eρ2〉′. (4.16)

The Lagrangian for the lower-rank tensor gauge fields has the following form:

L = L1 + L2 + L′

2 + ... = −
1

4
Ga

µνG
a
µν (4.17)

−
1

4
Ga

µν,λG
a
µν,λ −

1

4
Ga

µνG
a
µν,λλ

+
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ + ...

The above Lagrangian defines the kinetic operators for the rank-1 Aa
µ and rank-2 Aa

µλ1

fields, as well as trilinear and quartic interactions with the dimensionless coupling constant

g (see Fig.1-2) .

As we found in [9, 10, 11], the corresponding free field equations coincide with the

equations introduces in the classical works [25, 26, 27] and describe the propagation of

the helicity-two and zero h = ±2, 0 massless charged tensor gauge bosons, and there are

no propagating negative norm states. This is in agreement with the spectrum presented

in (3.13). The next term in expansion of the Lagrangian density has the following form

[28, 29]:

L3 + L′

3 = −
1

4
Ga

µν,λρG
a
µν,λρ −

1

8
Ga

µν,λλG
a
µν,ρρ −

1

2
Ga

µν,λG
a
µν,λρρ −

1

8
Ga

µνG
a
µν,λλρρ +

+
1

3
Ga

µν,λρG
a
µλ,νρ +

1

3
Ga

µν,νλG
a
µρ,ρλ +

1

3
Ga

µν,νλG
a
µλ,ρρ + (4.18)

+
1

3
Ga

µν,λG
a
µλ,νρρ +

2

3
Ga

µν,λG
a
µρ,νλρ +

1

3
Ga

µν,νG
a
µλ,λρρ +

1

3
Ga

µνG
a
µλ,νλρρ

12



Interaction of Tensor Gauge Fields      

b, β

a, ’αα c, ’γγ

k

p

q

Figure 1: The interaction vertex for the vector gauge boson V and two tensor gauge
bosons T - the VTT vertex - Vabc

αάβγγ́(k, p, q) in non-Abelian tensor gauge field theory [11].
Vector gauge bosons are conventionally drawn as thin wave lines, tensor gauge bosons
are thick wave lines. The Lorentz indices αά and momentum k belong to the first tensor
gauge boson, the γγ́ and momentum q belong to the second tensor gauge boson, and
Lorentz index β and momentum p belong to the vector gauge boson.

and the corresponding free field equations for the tensor gauge field Aµλ1λ2
in four-

dimensional space-time describe the propagation of helicity-three and one h = ±3,±1,±1

massless charged gauge bosons in agrement with the spectrum (3.13). There are no prop-

agating negative norm states. The comparison of these equations with the Schwinger-

Fronsdal equations [30, 31, 32, 33] can be found in [45].

Considering the free field equation for the general rank-(s+1) tensor gauge field one

can find that the quadratic part of the Lagrangian has the following form [29]:

Ls+1 + L′

s+1 |quadratic =
1

2
Aa

αλ1...λs
Hαλ1...λs γλs+1...λ2sAa

γλs+1...λ2s
(4.19)

and is invariant with respect to the group of gauge transformations

δAa
αλ1...λs

= ∂αξ
a
λ1...λs

, δ̃Aa
αλ1...λs

= ∂λ1
ζaλ2...λsα

+ ...+ ∂λsζ
a
λ1...λs−1α

, (4.20)

which should fulfil the following constraints:

∂ρζaρλ1...λs−1
− 1

s−2(∂λ1
ζaλ2...λs−1ρρ

+ ... + ∂λs−1
ζaλ1...λs−2ρρ

) = 0,

∂λ1
ζaλ2...λs−1ρρ

− ∂λ2
ζaλ1...λs−1ρρ

= 0.
(4.21)

In momentum representation the kinetic operator has the following general form:

13

b, β

d, ’δδ c, ’γγ

k p

qr

a, α

Figure 2: The quartic vertex with two vector gauge bosons and two tensor gauge bosons -
the VVTT vertex - Vabcd

αβγγ́δδ́
(k, p, q, r) in non-Abelian tensor gauge field theory [11]. Vector

gauge bosons are conventionally drawn as thin wave lines, tensor gauge bosons are thick
wave lines. The Lorentz indices γγ́ and momentum q belong to the first tensor gauge
boson, δδ́ and momentum r belong to the second tensor gauge boson, the index α and
momentum k belong to the first vector gauge boson and Lorentz index β and momentum
p belong to the second vector gauge boson.

Hαλ1...λs γλs+1...λ2s = +
1

s!
(
∑

p

ηλi1
λi2

.......ηλi2s−1
λi2s

) (−k2ηαγ + kαkγ)

+
1

(s+ 1)!
(
∑

P

ηαλi1
ηλi2

λi3
.......ηλi2s−2

λi2s−1
ηγλi2s

) k2

−
1

(s+ 1)!
(
∑

P

ηρλi1
ηλi2

λi3
.......ηλi2s−2

λi2s−1
ηγλi2s

) kαkρ (4.22)

−
1

(s+ 1)!
(
∑

P

ηρλi1
ηλi2

λi3
.......ηλi2s−2

λi2s−1
ηαλi2s

) kρkγ

+
1

(s+ 1)!
ηαγ (

∑

P

ηρλi1
ηλi2

λi3
.......ηλi2s−2

λi2s−1
ησλi2s

) kρkσ,

where the sum
∑

P runs over all non-equal permutations of λi
′s. The solution of the free

field equation for the rank-(s+1) field [29]

Hαλ1...λs γλs+1...λ2s Aγλs+1...λ2s = 0. (4.23)

describes the propagation of the helicities:

h = ±(s + 1),
±(s− 1)
±(s− 1)

,
±(s− 3)
±(s− 3)

, .... (4.24)

It is convenient to represent the spectrum (4.24) of tensor gauge bosons in the form which

combines the helicity spectrum of all bosons. It is unbounded and has the following form
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Callan-Simanzik Beta Function     

beta function has the same signature as the standard gluons, which means that tensorglu-

ons ”accelerate” the asymptotic freedom (6.3) of the strong interaction coupling constant

α(t). The contribution is increasing quadratically with the spin of the tensorgluons, that

is, at large transfer momentum the strong coupling constant tends to zero faster compared

to the standard case:

α(t) =
α

1 + bα t
, (6.10)

where

b =
(12s2 − 1)C2(G)− 4nfT (R)

12π
, s = 1, 2, ... (6.11)

Surprisingly, a similar result based on the parametrization of the charge renormalization

taken in the form b = (−1)2s(A + Bs2) was conjectured by Curtright [92]. Here A

represents an orbital contribution and Bs2 - the anomalous magnetic moment contribution

[93, 94, 95]. The unknown coefficients A and B were found by comparing the suggested

parametrisation with the known results for s= 0, 1/2 and 1.

It is also possible to consider a straitforward generalisation of the result obtained for

the effective action in Yang-Mills theory long ago [93, 94, 95, 96] to the higher spin gauge

bosons. With the spectrum of the tensorgluons in the external chromomagnetic field

λ = (2n + 1 + 2s)gH + k2
‖ one can perform a summation of the modes and get an exact

result for the one-loop effective action similarly to [93, 96]:

ε =
H2

2
+

(gH)2

4π
b [ln

gH

µ2
−

1

2
], (6.12)

where

b = −
2C2(G)

π
ζ(−1,

2s+ 1

2
) =

12s2 − 1

12π
C2(G), (6.13)

and ζ(−1, q) = −1
2(q

2 − q + 1
6) is the generalised zeta function2. Because the coefficient

in front of the logarithm defines the beta function [93, 94], one can see that (6.13) is in

agrement with the result (6.9).

It is also natural to ask what will happen if one takes into consideration the contribu-

tion of tensorgluons of all spins into the beta function3. One can suggest two scenarios.

In the first one the high spin gluons, let us say, of s ≥ 3, will get large mass and therefore

they can be ignored at a given energy scale. In the second case, when all of them remain

2The generalised zeta function is defined as ζ(p, q) =
∑

∞

k=0
1

(k+q)p = 1
Γ(p)

∫

∞

0 dtt−1+p e−qt

1−e−t .
3I would like to thank John Iliopoulos and Constantin Bachas for raising this question.
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way:

∫ 1

0

dz
f(z)

(1− z)2s−1
+

=

∫ 1

0

dz
f(z)−

∑2s−2
k=0

(−1)k

k! f (k)(1)(1− z)k

(1− z)2s−1
,

∫ 1

0

dz
f(z)

z2s−1
+

=

∫ 1

0

dz
f(z)−

∑2s−2
k=0

1
k!f

(k)(0)zk

z2s−1
, (6.6)

∫ 1

0

dz
f(z)

z+(1− z)+
=

∫ 1

0

dz
f(z)− (1− z)f(0)− zf(1)

z(1 − z)
,

where f(z) is any test function which is sufficiently regular at the end points and, as

one can see, the defined substraction guarantees the convergence of the integrals. Using

the same arguments as in the standard case [78] we should add the delta function terms

into the definition of the diagonal kernels so that they will completely determine the

behaviour of Pqq(z) , PGG(z) and PTT (z) functions. The first equation in the momentum

sum rule (6.5) remains unchanged because there is no tensorgluon contribution into the

quark evolution. The second equation in the momentum sum rule (6.5) will take the

following form:

∫ 1

0 dzz[2nfPqG(z) + PGG(z) + PTG(z) + bGδ(z − 1)] =

=
∫ 1

0 dzz[2nfT (R)[z2 + (1− z)2] + C2(G)
[

1
z(1−z) +

z4

z(1−z) +
(1−z)4

z(1−z)

]

+

+C2(G)
[

z4

z(1−z)

(

z
1−z

)2s−2
+ (1−z)4

z(1−z)

(

1−z
z

)2s−2
]

] + bG =

= 2
3nfT (R)− 11

6 C2(G)− 12s2−1
6 C2(G) + b = 0. (6.7)

From this result we can extract an additional contribution to the one-loop Callan-Symanzik

beta function arising from the tensorgluon loop. Indeed, the first beta-function coefficient

enters into this expression because the momentum sum rule (6.5) implicitly comprises

unitarity, thus the one-loop effects [78]. In (6.7) we have three terms which come from

gluon and quark loops:

b1 =
11

6
C2(G)−

2nf

3
T (R), (6.8)

and from the tensorboson loop of spin s:

bT =
12s2 − 1

6
C2(G), s = 1, 2, 3, 4, .... (6.9)

It is a very interesting result because at s=1 we are rediscovering the asymptotic freedom

result [86, 87, 88]. For larger spins the tensorgluon contribution into the Callan-Simanzik
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Abstract In the model of extended non-Abelian tensor
gauge fields we have found new metric-independent densi-
ties: the exact (2n + 3)-forms and their secondary charac-
teristics, the (2n + 2)-forms as well as the exact 6n-forms
and the corresponding secondary (6n − 1)-forms. These
forms are the analogs of the Pontryagin densities: the ex-
act 2n-forms and Chern–Simons secondary characteristics,
the (2n − 1)-forms. The (2n + 3)- and 6n-forms are gauge
invariant densities, while the (2n + 2)- and (6n − 1)-forms
transform non-trivially under gauge transformations, which
we compare with the corresponding transformations of the
Chern–Simons secondary characteristics. This construction
allows to identify new potential gauge anomalies in various
dimensions.

1 Introduction

It is well known that one can determine all chiral anoma-
lies, Abelian and non-Abelian [1–17], by a differential geo-
metric method without having to evaluate the Feynman dia-
grams. The non-Abelian anomaly in 2n-dimensional space–
time may be obtained from the Abelian anomaly in 2n + 2
dimensions by a series of reduction (transgression) steps
[6–9, 11–14, 17]. The reduction allows to construct topolog-
ical densities which are the non-Abelian anomalies and can
be represented in a compact integral form [6–9, 11–14, 17].
The topological character of these densities has physical
relevance [18–21] and imposes consistency restrictions on
the quantum gauge field theories [22–24]. It also provides
various topological mass-generation mechanisms in gauge
theories [25–27]. For instance, in the topologically massive

a e-mail: savvidy@inp.demokritos.gr
bOn leave of absence from CPHT École Polytechnique, 91128
Palaiseau Cedex, France.
cOn leave of absence from Demokritos National Research Center, Ag.
Paraskevi, Athens, Greece.

gauge theory in three dimensions, a Chern–Simons term in-
cluded in the action makes gauge fields massive [25–27].
Furthermore, in a four-dimensional Abelian gauge field the-
ory, a topological entity called BF term plays the a of a
Chern–Simons term and generates a massive vector field
[28–32, 34–36]. Generalization to the non-Abelian case was
recently suggested in [37].

Our intension in this article is to extend these construc-
tions to the non-Abelian tensor gauge fields. Indeed, we
found two series of invariant densities in various dimensions
which are analogous to the Pontryagin–Chern–Simons den-
sities. First we shall review the lower-dimensional case and
then turn to the higher-dimensional extensions.

In the non-Abelian tensor gauge theory [38–40] there ex-
ists a gauge invariant metric-independent density Γ (A) in
five-dimensional space–time1 [37]:

Γ (A) = εlmnpq Tr(GlmGnp,q) = ∂lΣ
l , (1)

which is the derivative of the vector current Σl :

Σ l = εlmnpq Tr(GmnApq). (2)

The current Σ l is linear in the Yang–Mills (YM) field-
strength tensor Gmn and in the rank-2 gauge field Apq which
has a symmetric and antisymmetric part, and only its anti-
symmetric part involved in (2). Gnp,q is the field-strength
tensor of the rank-2 gauge field (28). The density Γ (A) is
diffeomorphism-invariant and does not involve the space–
time metric. It is also invariant under the group of gauge
transformations (31): Γ (AU) = Γ (A). It shares therefore
many properties of the Chern–Pontryagin density in four-
dimensional YM theory [13, 18]:

P (A) = 1
4
εµνλρ TrGµνGλρ = ∂µCµ, (3)

1The definition of the higher-rank field-strength tensors Gnm,q is given
in Eq. (28) and we use Latin letters to numerate five-dimensional coor-
dinates xl (l,m,n, . . . = 0,1, . . . ,4).

 Chern-Pontryagin density in 4-D Yang-Mills Theory  

Page 2 of 13 Eur. Phys. J. C (2012) 72:2140

which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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which is the derivative of the vector current Σl . This invariant in five dimensions has many properties of the Chern–Pontryagin density
P = ∂µCµ in four-dimensional YM theory, which is a derivative of the Chern–Simons topological vector current Cµ . Considering the fifth
component of the vector current Σ4 ≡ Σ and fields which are independent on the fifth spacial coordinate x4, one can get a gauge invariant
density which is defined in four-dimensional space–time3:

Σ = εµνρλ Tr Gµν Aρλ. (2)

Its dimensionality is [mass]3, therefore in order to get dimensionless functional in four dimensions we should multiply it by the param-
eter m which has dimensionality [mass]1. Adding this term to the Lagrangian of non-Abelian tensor gauge fields leaves intact its gauge
invariance, and to lowest order in coupling constant the equations of motion for the YM field Aµ = eµeikx of helicities λ = ±1 and for the
antisymmetric part Bµν = bµνeikx of the rank-2 gauge field Aµν , which carries helicity zero λ = 0 state, can be written in the form (23).
These field equations describe massive state of the vector particle of the mass

M2 = 4
3

m2. (3)

Thus at the classical level the YM vector boson becomes massive. The antisymmetric tensor Ba
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the longitudinal polarization of the massive vector meson, suggesting an alternative mechanism for mass generation in non-Abelian gauge
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representation, it follows that all vector fields Aa

µ , a = 1, . . . ,dim G acquire the same mass M . At this stage the symmetric part A S
µν of the

rank-2 gauge field, which carries helicities λ = ±2, remains massless.
As a next step we shall demonstrate that in five-dimensional space–time there actually exists an infinite series of invariants Γs (s =

1,3, . . .) which are constructed by means of the totally antisymmetric Levi-Civita epsilon tensor εlmnpq in combination with the generalized
field strength tensors Gmn,l1...ls and the space–time metric gnm . These invariants can be represented as total derivatives of the vector
currents Σ s

l :

Γs = ∂lΣ
s
l ,

where the vector currents Σ s
l involve a free index l carried by the Levi-Civita epsilon tensor. Considering the fifth component of the

vector current Σ s
4 ≡ Σs and tensor fields which are independent on the fifth spacial coordinate x4, we shall get invariant densities which

are defined in four-dimensional space–time. Their dimensionality is [mass]3 therefore in order to get dimensionless functional in (3 + 1)
dimensions we should multiply them by the parameters ms which have units [mass]1. Adding these densities to the Lagrangian of non-
Abelian tensor fields keeps intact its gauge invariance, up to total divergence terms, so that the Lagrangian takes the following form:

Lm = LYM +
∑

s

(
Ls+1 + 2s

s + 1
L′

s+1

)
+

∑

s

msΣs, (4)

where Ls and L′
s are defined in (6) and (7). The natural appearance of the mass parameters hints at the fact that the theory turns out to

be a massive theory. In the next sections we shall present actual contraction of the above invariants.

2. The gauge fields are defined as rank-(s + 1) tensors [21–23]

Aa
µλ1...λs

(x),

which are totally symmetric with respect to the indices λ1 . . .λs . The number of symmetric indices s runs from zero to infinity.4 The
index a numerates the generators La of an appropriate Lie algebra. The extended non-Abelian gauge transformation δξ of the tensor gauge
fields is defined in Appendix A and comprises a closed algebraic structure. The generalized field strength tensors are defined as follows
[21–23]:

Gµν = ∂µ Aν − ∂ν Aµ − ig[Aµ Aν ],
Gµν,λ = ∂µ Aνλ − ∂ν Aµλ − ig

(
[Aµ Aνλ] + [Aµλ Aν ]

)
,

Gµν,λρ = ∂µ Aνλρ − ∂ν Aµλρ − ig
(
[Aµ Aνλρ ] + [Aµλ Aνρ ] + [Aµρ Aνλ] + [Aµλρ Aν ]

)
,

· · · (5)

and transform homogeneously with respect to the extended gauge transformations δξ . The tensor gauge fields are in the matrix represen-
tation Aab

µλ1...λs
= (Lc)

ab Ac
µλ1...λs

= i f acb Ac
µλ1...λs

and f abc are the structure constants of the Lie algebra.
Using field strength tensors one can construct two infinite series of forms Ls and L′

s invariant with respect to the transformations δξ .
They are quadratic in field strength tensors. The first series is given by the formula [21–23]

Ls+1 = −1
4

2s∑

i=0

as
i Ga

µν,λ1...λi
Ga

µν,λi+1...λ2s

(∑

P

ηλi1 λi2 · · ·ηλi2s−1 λi2s

)
, (6)

where the sum
∑

P runs over all nonequal permutations of λ′
i s and as

i = s!
i!(2s−i)! . The second series of gauge invariant quadratic forms is

given by the formula [21–23,30]

3 We are using Greek letters to numerate four-dimensional coordinates.
4 A priori the tensor fields have no symmetries with respect to the first index µ. The free field theory of totally symmetric tensors of high rank were constructed in

[24–26,8,27–29].

Page 2 of 13 Eur. Phys. J. C (2012) 72:2140
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2
3
gAνAλAρ
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. (4)
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Topological Mass Generation  

1 Introduction

Several mechanisms are currently known for generating massive vector particles that are
compatible with the gauge invariance. One of them is the spontaneous symmetry breaking
mechanism, which generates masses and requires the existence of the fundamental scalar
particle - the Higgs boson. The scalar field provides the longitudinal polarization of the
massive vector boson and ensures unitarity of its scattering amplitudes [1, 2]1.

The argument in favor of a pure gauge field theory mechanism was a dynamical mech-
anism of mass generation proposed by Schwinger [3], who was arguing that the gauge
invariance of a vector field does not necessarily lead to the massless spectrum of its exci-
tations and suggested its realization in (1+1)-dimensional gauge theory[4].

Compatibility of gauge invariance and mass term in (2+1)-dimensional gauge field
theory was demonstrated by Deser, Jackiw and Templeton [19, 20] and Schonfeld [21],
who added to the YM Lagrangian a gauge invariant Chern-Simons density:

LYMCS = −
1

2
TrGijGij +

µ

2
εijk Tr (Ai∂jAk − ig

2

3
AiAjAk),

where Gij is a field strength tensor. The mass parameter µ carries dimension of [mass]1.
The corresponding free equation of motion for the vector potential Ai = eie

ikx has the
form

(−k2ηij + kikj)ej + iµ εijl kjel = 0

and shows that the gauge field excitation becomes massive.
In this article we suggest a similar mechanism that generates masses of the YM boson

and tensor gauge bosons in (3+1)-dimensional space-time at the classical level. As we
shall see, in non-Abelian tensor gauge theory [22, 23, 24] there exists a gauge invariant,
metric-independent density Γ in five-dimensional space-time2:

Γ = εlmnpqTrGlmGnp,q = ∂lΣl, (1)

which is the derivative of the vector current Σl (l,..=0,1,...,4). This invariant in five
dimensions has many properties of the Chern-Pontryagin density P = ∂µCµ in four-
dimensional YM theory, which is a derivative of the Chern-Simons topological vector
current Cµ. Considering the fifth component of the vector current Σ4 ≡ Σ and fields
which are independent on the fifth spacial coordinate x4, one can get a gauge invariant
density which is defined in four-dimensional space-time3:

Σ = εµνρλTr GµνAρλ. (2)

Its dimensionality is [mass]3, therefore in order to get dimensionless functional in four
dimensions we should multiply it by the parameter m which has dimensionality [mass]1.
Adding this term to the Lagrangian of non-Abelian tensor gauge fields leaves intact its
gauge invariance, and to lowest order in coupling constant the equations of motion for the
YM field Aµ = eµe

ikx of helicities λ = ±1 and for the antisymmetric part Bµν = bµνe
ikx

of the rank-2 gauge field Aµν , which carries helicity zero λ = 0 state, can be written in
the following form:

(−k2ηνµ + kνkµ)eµ + im ενµλρkµbλρ = 0,

(−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ)bµρ + i
2m

3
ενλµρkµeρ = 0.

1Extended discussion and references can be found in [3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
2The definition of the higher-rank field strength tensors is given by formula (5).
3We are using Greek letters to numerate four-dimensional coordinates.
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Abstract In the model of extended non-Abelian tensor
gauge fields we have found new metric-independent densi-
ties: the exact (2n + 3)-forms and their secondary charac-
teristics, the (2n + 2)-forms as well as the exact 6n-forms
and the corresponding secondary (6n − 1)-forms. These
forms are the analogs of the Pontryagin densities: the ex-
act 2n-forms and Chern–Simons secondary characteristics,
the (2n − 1)-forms. The (2n + 3)- and 6n-forms are gauge
invariant densities, while the (2n + 2)- and (6n − 1)-forms
transform non-trivially under gauge transformations, which
we compare with the corresponding transformations of the
Chern–Simons secondary characteristics. This construction
allows to identify new potential gauge anomalies in various
dimensions.

1 Introduction

It is well known that one can determine all chiral anoma-
lies, Abelian and non-Abelian [1–17], by a differential geo-
metric method without having to evaluate the Feynman dia-
grams. The non-Abelian anomaly in 2n-dimensional space–
time may be obtained from the Abelian anomaly in 2n + 2
dimensions by a series of reduction (transgression) steps
[6–9, 11–14, 17]. The reduction allows to construct topolog-
ical densities which are the non-Abelian anomalies and can
be represented in a compact integral form [6–9, 11–14, 17].
The topological character of these densities has physical
relevance [18–21] and imposes consistency restrictions on
the quantum gauge field theories [22–24]. It also provides
various topological mass-generation mechanisms in gauge
theories [25–27]. For instance, in the topologically massive

a e-mail: savvidy@inp.demokritos.gr
bOn leave of absence from CPHT École Polytechnique, 91128
Palaiseau Cedex, France.
cOn leave of absence from Demokritos National Research Center, Ag.
Paraskevi, Athens, Greece.

gauge theory in three dimensions, a Chern–Simons term in-
cluded in the action makes gauge fields massive [25–27].
Furthermore, in a four-dimensional Abelian gauge field the-
ory, a topological entity called BF term plays the a of a
Chern–Simons term and generates a massive vector field
[28–32, 34–36]. Generalization to the non-Abelian case was
recently suggested in [37].

Our intension in this article is to extend these construc-
tions to the non-Abelian tensor gauge fields. Indeed, we
found two series of invariant densities in various dimensions
which are analogous to the Pontryagin–Chern–Simons den-
sities. First we shall review the lower-dimensional case and
then turn to the higher-dimensional extensions.

In the non-Abelian tensor gauge theory [38–40] there ex-
ists a gauge invariant metric-independent density Γ (A) in
five-dimensional space–time1 [37]:

Γ (A) = εlmnpq Tr(GlmGnp,q) = ∂lΣ
l , (1)

which is the derivative of the vector current Σl :

Σ l = εlmnpq Tr(GmnApq). (2)

The current Σ l is linear in the Yang–Mills (YM) field-
strength tensor Gmn and in the rank-2 gauge field Apq which
has a symmetric and antisymmetric part, and only its anti-
symmetric part involved in (2). Gnp,q is the field-strength
tensor of the rank-2 gauge field (28). The density Γ (A) is
diffeomorphism-invariant and does not involve the space–
time metric. It is also invariant under the group of gauge
transformations (31): Γ (AU) = Γ (A). It shares therefore
many properties of the Chern–Pontryagin density in four-
dimensional YM theory [13, 18]:

P (A) = 1
4
εµνλρ TrGµνGλρ = ∂µCµ, (3)

1The definition of the higher-rank field-strength tensors Gnm,q is given
in Eq. (28) and we use Latin letters to numerate five-dimensional coor-
dinates xl (l,m,n, . . . = 0,1, . . . ,4).
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L′
s+1 = 1

4

2s+1∑

i=1

as
i−1

s
Ga

µλ1,λ2...λi
Ga

µλi2s+2 ,λi+1...λ2s+1

(∑′

P

ηλi1 λi2 · · ·ηλi2s+1 λi2s+2

)
, (7)

where the sum
∑′

P runs over all nonequal permutations of λ′
i s, with exclusion of the terms which contain ηλ1,λ2s+2 . These forms contain

quadratic kinetic terms, as well as cubic and quartic terms describing nonlinear interaction of gauge fields with dimensionless coupling
constant g . In order to make all tensor gauge fields dynamical one should add all these forms as it is in the Lagrangian (4) [21–23,30,32].

3. Let us consider a new invariant in five-dimensional space–time (4 + 1), which can be constructed by means of the totally antisym-
metric Levi-Civita epsilon tensor εµνλρσ (µ,ν, . . . = 0,1,2,3,4) in combination with the generalized field strength tensors (5)

Γ = εµνλρσ Tr GµνGλρ,σ = 2εµνλρσ Ga
µνGa

λρ,σ . (8)

This invariant in five dimensions has many properties of the Chern–Pontryagin density

P = 1
4
εµνλρ Tr GµνGλρ = ∂µCµ (9)

in four-dimensional Yang–Mill theory, where

Cµ = εµνλρ Tr
(

Aν∂λ Aρ − i
2
3

g Aν Aλ Aρ

)
(10)

is the Chern–Simons topological current. Indeed, Γ is obviously diffeomorphism-invariant and does not involve a space–time metric. It is
gauge invariant because under the gauge transformation δξ (36) it vanishes:

δξΓ = −igεµνλρσ Tr
(
[Gµνξ ]Gλρ,σ + Gµν

(
[Gλρ,σ ξ ] + [Gλρξσ ]

))
= 0.

The variation of its integral over the gauge fields Aa
µ and Aa

µλ gives:

δA

∫

M5

d5xΓ = −2εµνλρσ

∫
d5x Tr

((
∇µGλρ,σ − ig[Aµσ Gλρ ]

)
δAν + (∇λGµν)δAρσ

)

+ 2εµνλρσ

∫
d5x Tr

(
∇µ(Gλρ,σ δAν) + ∇λ(GµνδAρσ )

)
.

Recalling the Bianchi identity in YM theory and the generalized Bianchi identities for higher-rank field strength tensor Gνλ,ρ presented
in Appendix A, one can see that Γ gets contribution only from the boundary terms and vanishes when the fields vary in the bulk of the
manifold5:

δA

∫

M5

d5xΓ = 2εµνλρσ

∫

M5

d5x∂µ Tr(Gλρ,σ δAν + GνλδAρσ )

= 2εµνλρσ

∫

∂M5

Tr(Gλρ,σ δAν + GνλδAρσ )dσµ = 0.

Therefore Γ is insensitive to the local variation of the fields. It became obvious that Γ is a total derivative of some vector current Σµ .
Indeed, simple algebraic computation gives Γ = εµνλρσ Tr Gµν Gλρ,σ = ∂µΣµ , where

Σµ = 2εµνλρσ Tr(Aν∂λ A,σ − ∂λ Aν Aρσ − 2ig Aν Aλ Aρσ ). (11)

After some rearrangement and taking into account the definition of the field strength tensors (5) we can get the following form of the
vector current:

Σµ = εµνλρσ Tr Gνλ Aρσ . (12)

It is instructive to compare the expressions (8), (9) and (10), (12). Both entities P and Γ are metric-independent, are insensitive to the
local variation of the fields and are derivatives of the corresponding vector currents Cµ and Σµ . The difference between them is that the
former is defined in four dimensions, while the latter in five. This difference in one unit of the space–time dimension originates from the
fact that we have at our disposal high-rank tensor gauge fields to build new invariants. The same is true for the Chern–Simons topological
current Cµ and for the current Σµ , where the latter is defined in five dimensions. It is also remarkable that the current Σµ is linear in
YM field strength tensor and in the rank-2 gauge field, picking up only its antisymmetric part.

While the invariant Γ and the vector current Σµ are defined on a five-dimensional manifold, we may restrict the latter to one lower,
four-dimensional manifold. The restriction proceeds as follows. Let us consider the fifth component of the vector current Σµ:

Σ ≡ Σ4 = ε4νλρσ Tr Gνλ Aρσ . (13)

Considering the fifth component of the vector current Σ ≡ Σ4 one can see that the remaining indices will not repeat the external
index and the sum is restricted to the sum over indices of four-dimensional space–time. Therefore we can reduce this functional to four

5 The trace of the commutators vanishes: Tr([Aµ; Gλρ,σ δAν ] + [Aλ; GµνδAρσ ]) = 0.
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Recalling the Bianchi identity in YM theory and the generalized Bianchi identities for higher-rank field strength tensor Gνλ,ρ presented
in Appendix A, one can see that Γ gets contribution only from the boundary terms and vanishes when the fields vary in the bulk of the
manifold5:
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Therefore Γ is insensitive to the local variation of the fields. It became obvious that Γ is a total derivative of some vector current Σµ .
Indeed, simple algebraic computation gives Γ = εµνλρσ Tr Gµν Gλρ,σ = ∂µΣµ , where

Σµ = 2εµνλρσ Tr(Aν∂λ A,σ − ∂λ Aν Aρσ − 2ig Aν Aλ Aρσ ). (11)

After some rearrangement and taking into account the definition of the field strength tensors (5) we can get the following form of the
vector current:

Σµ = εµνλρσ Tr Gνλ Aρσ . (12)

It is instructive to compare the expressions (8), (9) and (10), (12). Both entities P and Γ are metric-independent, are insensitive to the
local variation of the fields and are derivatives of the corresponding vector currents Cµ and Σµ . The difference between them is that the
former is defined in four dimensions, while the latter in five. This difference in one unit of the space–time dimension originates from the
fact that we have at our disposal high-rank tensor gauge fields to build new invariants. The same is true for the Chern–Simons topological
current Cµ and for the current Σµ , where the latter is defined in five dimensions. It is also remarkable that the current Σµ is linear in
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While the invariant Γ and the vector current Σµ are defined on a five-dimensional manifold, we may restrict the latter to one lower,
four-dimensional manifold. The restriction proceeds as follows. Let us consider the fifth component of the vector current Σµ:

Σ ≡ Σ4 = ε4νλρσ Tr Gνλ Aρσ . (13)

Considering the fifth component of the vector current Σ ≡ Σ4 one can see that the remaining indices will not repeat the external
index and the sum is restricted to the sum over indices of four-dimensional space–time. Therefore we can reduce this functional to four

5 The trace of the commutators vanishes: Tr([Aµ; Gλρ,σ δAν ] + [Aλ; GµνδAρσ ]) = 0.
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Σ ≡ Σ4 = ε4νλρσ Tr Gνλ Aρσ . (13)

Considering the fifth component of the vector current Σ ≡ Σ4 one can see that the remaining indices will not repeat the external
index and the sum is restricted to the sum over indices of four-dimensional space–time. Therefore we can reduce this functional to four

5 The trace of the commutators vanishes: Tr([Aµ; Gλρ,σ δAν ] + [Aλ; GµνδAρσ ]) = 0.

New Topological Invariant in Tensor Gauge Theory  



  Tensor Gauge Theory and Mass Generation  

G. Savvidy / Physics Letters B 694 (2010) 65–73 67

L′
s+1 = 1

4

2s+1∑

i=1

as
i−1

s
Ga

µλ1,λ2...λi
Ga

µλi2s+2 ,λi+1...λ2s+1

(∑′

P

ηλi1 λi2 · · ·ηλi2s+1 λi2s+2

)
, (7)

where the sum
∑′

P runs over all nonequal permutations of λ′
i s, with exclusion of the terms which contain ηλ1,λ2s+2 . These forms contain

quadratic kinetic terms, as well as cubic and quartic terms describing nonlinear interaction of gauge fields with dimensionless coupling
constant g . In order to make all tensor gauge fields dynamical one should add all these forms as it is in the Lagrangian (4) [21–23,30,32].

3. Let us consider a new invariant in five-dimensional space–time (4 + 1), which can be constructed by means of the totally antisym-
metric Levi-Civita epsilon tensor εµνλρσ (µ,ν, . . . = 0,1,2,3,4) in combination with the generalized field strength tensors (5)

Γ = εµνλρσ Tr GµνGλρ,σ = 2εµνλρσ Ga
µνGa

λρ,σ . (8)

This invariant in five dimensions has many properties of the Chern–Pontryagin density

P = 1
4
εµνλρ Tr GµνGλρ = ∂µCµ (9)

in four-dimensional Yang–Mill theory, where

Cµ = εµνλρ Tr
(

Aν∂λ Aρ − i
2
3

g Aν Aλ Aρ

)
(10)

is the Chern–Simons topological current. Indeed, Γ is obviously diffeomorphism-invariant and does not involve a space–time metric. It is
gauge invariant because under the gauge transformation δξ (36) it vanishes:

δξΓ = −igεµνλρσ Tr
(
[Gµνξ ]Gλρ,σ + Gµν

(
[Gλρ,σ ξ ] + [Gλρξσ ]

))
= 0.

The variation of its integral over the gauge fields Aa
µ and Aa

µλ gives:

δA

∫

M5

d5xΓ = −2εµνλρσ

∫
d5x Tr

((
∇µGλρ,σ − ig[Aµσ Gλρ ]

)
δAν + (∇λGµν)δAρσ

)

+ 2εµνλρσ

∫
d5x Tr

(
∇µ(Gλρ,σ δAν) + ∇λ(GµνδAρσ )

)
.

Recalling the Bianchi identity in YM theory and the generalized Bianchi identities for higher-rank field strength tensor Gνλ,ρ presented
in Appendix A, one can see that Γ gets contribution only from the boundary terms and vanishes when the fields vary in the bulk of the
manifold5:

δA

∫

M5

d5xΓ = 2εµνλρσ

∫

M5

d5x∂µ Tr(Gλρ,σ δAν + GνλδAρσ )

= 2εµνλρσ

∫

∂M5

Tr(Gλρ,σ δAν + GνλδAρσ )dσµ = 0.

Therefore Γ is insensitive to the local variation of the fields. It became obvious that Γ is a total derivative of some vector current Σµ .
Indeed, simple algebraic computation gives Γ = εµνλρσ Tr Gµν Gλρ,σ = ∂µΣµ , where

Σµ = 2εµνλρσ Tr(Aν∂λ A,σ − ∂λ Aν Aρσ − 2ig Aν Aλ Aρσ ). (11)

After some rearrangement and taking into account the definition of the field strength tensors (5) we can get the following form of the
vector current:

Σµ = εµνλρσ Tr Gνλ Aρσ . (12)

It is instructive to compare the expressions (8), (9) and (10), (12). Both entities P and Γ are metric-independent, are insensitive to the
local variation of the fields and are derivatives of the corresponding vector currents Cµ and Σµ . The difference between them is that the
former is defined in four dimensions, while the latter in five. This difference in one unit of the space–time dimension originates from the
fact that we have at our disposal high-rank tensor gauge fields to build new invariants. The same is true for the Chern–Simons topological
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dimensions. This is the case when the gauge fields are independent on the fifth coordinate x4. Thus the density Σ is well defined in
four-dimensional space–time and, as we shall see, it is also gauge invariant up to the total divergence term. Therefore we shall consider
its integral over four-dimensional space–time6:

∫

M4

d4xΣ = ενλρσ

∫

M4

d4x Tr Gνλ Aρσ . (14)

This entity is an analog of the Chern–Simons secondary characteristic

CS = εi jk

∫

M3

d3x Tr
(

Ai∂ j Ak − ig
2
3

Ai A j Ak

)
, (15)

but, importantly, instead of being defined in three dimensions it is now defined in four dimensions. Thus the non-Abelian tensor gauge
fields allow to build a natural generalization of the Chern–Simons characteristic in four-dimensional space–time.

As we claimed this functional is gauge invariant up to the total divergence term. Indeed, its gauge variation under δξ (35), (36) is

δξ

∫

M4

d4xΣ = ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ + Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ )d4x = ενλρσ

∫

∂M4

Tr(Gνλξσ )dσρ = 0. (16)

Here the first and the third terms cancel each other and the second one, after integration by part and recalling the Bianchi identity (38),
leaves only the boundary term, which vanishes when the gauge parameter ξσ tends to zero at infinity.

It is interesting to know whether or not the invariant Σ is associated with some new topological characteristic of the gauge fields.
If the YM field strength Gνλ vanishes, then the vector potential is equal to the pure gauge connection Aµ = U−∂µU . Inspecting the
expression for the invariant Σ one can get convinced that it vanishes on such fields because there is a field strength tensor Gνλ in the
integrant. Therefore it does not differentiate topological properties of the gauge function U , like its winding number. Both “small” and
“large” gauge transformations have zero contribution to this invariant. It may distinguish fields which are falling less faster at infinity and
have nonzero field strength tensor Gνλ and the tensor gauge field Aρσ .

In four dimensions the gauge fields have dimension of [mass]1, therefore if we intend to add this new density to the Lagrangian we
should introduce the mass parameter m:

mΣ = mενλρσ Tr Gνλ Aρσ , (17)

where parameter m has units [mass]1. Adding this term to the Lagrangian of non-Abelian tensor gauge fields keeps intact its gauge
invariance and our aim is to analyze the particle spectrum of this gauge field theory. The natural appearance of the mass parameters
hints at the fact that the theory turns out to be a massive theory. We shall see that the YM vector boson becomes massive, suggesting an
alternative mechanism for mass generation in gauge field theories in four-dimensional space–time.

We have to notice that the Abelian version of the invariant Σ was investigated earlier in [34–41]. Indeed, if one considers instead of
a non-Abelian group the Abelian group one can see that the invariant Σ reduces to the ενλρσ FνλBρσ and when added to the Maxwell
Lagrangian provides a mass to the vector field [34,36,33,37–39]. Attempts at producing a non-Abelian invariant in a similar way have
come up with difficulties because they involve non-Abelian generalization of gauge transformations of antisymmetric fields [42,39,43,44].
Let us compare the formulas (2.16) and (2.17) suggested in [39,40] for the transformation of antisymmetric field with the gauge transfor-
mation δξ (35). For lower-rank fields the latter can be written in the following way:

δξ Aµ = ∂µξ − ig[Aµ, ξ ], δξ Aµν = −ig[Aµν , ξ ],
δζ Aµ = 0, δζ Aµν = ∂µζν − ig[Aµ, ζν ].

The antisymmetric part of this transformation amazingly coincides with the one suggested in [39] if one takes the auxiliary field Ai
µ of [39]

equal to zero. The crucial point is that the gauge transformations of non-Abelian tensor gauge fields [21–23] defined in Appendix A cannot
be limited to a YM vector and antisymmetric field Ba

µν . Instead, antisymmetric field is augmented by a symmetric rank-2 gauge field, so
that together they form a gauge field Aa

µν which transforms as it is given above and is a fully propagating field. It is also important that
one should include all high-rank gauge fields in order to be able to close the group of gauge transformations and to construct invariant
Lagrangian.

4. Let us first recapitulate the analysis of the particle spectrum before including new massive terms into the Lagrangian [21–23]. In
the Yang–Mills theory the free equation of motion is

(
ηµν∂2 − ∂µ∂ν

)
Aa

ν = 0,

and describes the propagation of massless gauge bosons of helicity λ = ±1.

6 Below we are using the same Greek letters to numerate now the four-dimensional coordinates. There should be no confusion because the dimension can always be
recovered from the dimension of the epsilon tensor.
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alternative mechanism for mass generation in gauge field theories in four-dimensional space–time.

We have to notice that the Abelian version of the invariant Σ was investigated earlier in [34–41]. Indeed, if one considers instead of
a non-Abelian group the Abelian group one can see that the invariant Σ reduces to the ενλρσ FνλBρσ and when added to the Maxwell
Lagrangian provides a mass to the vector field [34,36,33,37–39]. Attempts at producing a non-Abelian invariant in a similar way have
come up with difficulties because they involve non-Abelian generalization of gauge transformations of antisymmetric fields [42,39,43,44].
Let us compare the formulas (2.16) and (2.17) suggested in [39,40] for the transformation of antisymmetric field with the gauge transfor-
mation δξ (35). For lower-rank fields the latter can be written in the following way:

δξ Aµ = ∂µξ − ig[Aµ, ξ ], δξ Aµν = −ig[Aµν , ξ ],
δζ Aµ = 0, δζ Aµν = ∂µζν − ig[Aµ, ζν ].

The antisymmetric part of this transformation amazingly coincides with the one suggested in [39] if one takes the auxiliary field Ai
µ of [39]

equal to zero. The crucial point is that the gauge transformations of non-Abelian tensor gauge fields [21–23] defined in Appendix A cannot
be limited to a YM vector and antisymmetric field Ba

µν . Instead, antisymmetric field is augmented by a symmetric rank-2 gauge field, so
that together they form a gauge field Aa

µν which transforms as it is given above and is a fully propagating field. It is also important that
one should include all high-rank gauge fields in order to be able to close the group of gauge transformations and to construct invariant
Lagrangian.

4. Let us first recapitulate the analysis of the particle spectrum before including new massive terms into the Lagrangian [21–23]. In
the Yang–Mills theory the free equation of motion is

(
ηµν∂2 − ∂µ∂ν

)
Aa

ν = 0,

and describes the propagation of massless gauge bosons of helicity λ = ±1.

6 Below we are using the same Greek letters to numerate now the four-dimensional coordinates. There should be no confusion because the dimension can always be
recovered from the dimension of the epsilon tensor.
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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dimensions. This is the case when the gauge fields are independent on the fifth coordinate x4. Thus the density Σ is well defined in
four-dimensional space–time and, as we shall see, it is also gauge invariant up to the total divergence term. Therefore we shall consider
its integral over four-dimensional space–time6:

∫

M4

d4xΣ = ενλρσ

∫

M4

d4x Tr Gνλ Aρσ . (14)

This entity is an analog of the Chern–Simons secondary characteristic

CS = εi jk

∫

M3

d3x Tr
(

Ai∂ j Ak − ig
2
3

Ai A j Ak

)
, (15)

but, importantly, instead of being defined in three dimensions it is now defined in four dimensions. Thus the non-Abelian tensor gauge
fields allow to build a natural generalization of the Chern–Simons characteristic in four-dimensional space–time.

As we claimed this functional is gauge invariant up to the total divergence term. Indeed, its gauge variation under δξ (35), (36) is

δξ

∫

M4

d4xΣ = ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ + Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ )d4x = ενλρσ

∫

∂M4

Tr(Gνλξσ )dσρ = 0. (16)

Here the first and the third terms cancel each other and the second one, after integration by part and recalling the Bianchi identity (38),
leaves only the boundary term, which vanishes when the gauge parameter ξσ tends to zero at infinity.

It is interesting to know whether or not the invariant Σ is associated with some new topological characteristic of the gauge fields.
If the YM field strength Gνλ vanishes, then the vector potential is equal to the pure gauge connection Aµ = U−∂µU . Inspecting the
expression for the invariant Σ one can get convinced that it vanishes on such fields because there is a field strength tensor Gνλ in the
integrant. Therefore it does not differentiate topological properties of the gauge function U , like its winding number. Both “small” and
“large” gauge transformations have zero contribution to this invariant. It may distinguish fields which are falling less faster at infinity and
have nonzero field strength tensor Gνλ and the tensor gauge field Aρσ .

In four dimensions the gauge fields have dimension of [mass]1, therefore if we intend to add this new density to the Lagrangian we
should introduce the mass parameter m:

mΣ = mενλρσ Tr Gνλ Aρσ , (17)

where parameter m has units [mass]1. Adding this term to the Lagrangian of non-Abelian tensor gauge fields keeps intact its gauge
invariance and our aim is to analyze the particle spectrum of this gauge field theory. The natural appearance of the mass parameters
hints at the fact that the theory turns out to be a massive theory. We shall see that the YM vector boson becomes massive, suggesting an
alternative mechanism for mass generation in gauge field theories in four-dimensional space–time.

We have to notice that the Abelian version of the invariant Σ was investigated earlier in [34–41]. Indeed, if one considers instead of
a non-Abelian group the Abelian group one can see that the invariant Σ reduces to the ενλρσ FνλBρσ and when added to the Maxwell
Lagrangian provides a mass to the vector field [34,36,33,37–39]. Attempts at producing a non-Abelian invariant in a similar way have
come up with difficulties because they involve non-Abelian generalization of gauge transformations of antisymmetric fields [42,39,43,44].
Let us compare the formulas (2.16) and (2.17) suggested in [39,40] for the transformation of antisymmetric field with the gauge transfor-
mation δξ (35). For lower-rank fields the latter can be written in the following way:

δξ Aµ = ∂µξ − ig[Aµ, ξ ], δξ Aµν = −ig[Aµν , ξ ],
δζ Aµ = 0, δζ Aµν = ∂µζν − ig[Aµ, ζν ].

The antisymmetric part of this transformation amazingly coincides with the one suggested in [39] if one takes the auxiliary field Ai
µ of [39]

equal to zero. The crucial point is that the gauge transformations of non-Abelian tensor gauge fields [21–23] defined in Appendix A cannot
be limited to a YM vector and antisymmetric field Ba

µν . Instead, antisymmetric field is augmented by a symmetric rank-2 gauge field, so
that together they form a gauge field Aa

µν which transforms as it is given above and is a fully propagating field. It is also important that
one should include all high-rank gauge fields in order to be able to close the group of gauge transformations and to construct invariant
Lagrangian.

4. Let us first recapitulate the analysis of the particle spectrum before including new massive terms into the Lagrangian [21–23]. In
the Yang–Mills theory the free equation of motion is
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)
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and describes the propagation of massless gauge bosons of helicity λ = ±1.
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dimensions. This is the case when the gauge fields are independent on the fifth coordinate x4. Thus the density Σ is well defined in
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but, importantly, instead of being defined in three dimensions it is now defined in four dimensions. Thus the non-Abelian tensor gauge
fields allow to build a natural generalization of the Chern–Simons characteristic in four-dimensional space–time.
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Here the first and the third terms cancel each other and the second one, after integration by part and recalling the Bianchi identity (38),
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hints at the fact that the theory turns out to be a massive theory. We shall see that the YM vector boson becomes massive, suggesting an
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one should include all high-rank gauge fields in order to be able to close the group of gauge transformations and to construct invariant
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
2 = −1

4
Ga

µν,λGa
µν,λ − 1

4
Ga

µνGa
µν,λλ + 1

4
Ga

µν,λGa
µλ,ν + 1

4
Ga

µν,νGa
µλ,λ + 1

2
Ga

µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν = 0

and describes the propagation of helicity-zero state, λ = 0.

5. Let us now see how the spectrum is changing when we add new invariant Σ (17) to the Lagrangian. With the new mass term the
Lagrangian takes the form

L = LYM + L2 + L′
2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab

µλGc
µν,λ − 1

2
g f abc(Ab

µλGc
µλ,ν + Ab

λµGc
µν,λ + Ab

µνGc
µλ,λ − Ab

λλGc
µν,µ

)
= 0,

∇ab
µ Gb

µν,λ + m
2

ενλµρGa
µρ − 1

2

(
∇ab

µ Gb
µλ,ν + ∇ab

µ Gb
λν,µ + ∇ab

λ Gb
µν,µ + ηνλ∇ab

µ Gb
µρ,ρ

)
+ g f abc Ab

µλGc
µν

+ 1
2

g f abc(Ab
µνGc

µλ + Ab
λµGc

µν + Ab
µµGc

λν − ηνλ Ab
µρ Gc

µρ

)
= 0. (20)

The corresponding free equations (g = 0) are:

∂2 Aa
ν − ∂ν∂µ Aa

µ + mενµλρ∂µ Aa
λρ = 0,

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)

+ mενλµρ∂µ Aa
ρ = 0. (21)

This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
antisymmetric part Bνλ of the rank-2 gauge field Aνλ interacts through the mass term, the symmetric part A S

νλ completely decouples
from both equations,8 therefore we arrive at the following system of equations:

∂2 Aν − ∂ν∂µ Aµ + mενµλρ∂µBλρ = 0,

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν + 2m
3

ενλµρ∂µ Aρ = 0. (22)

One can find the structure and the number of propagating modes calculating the rank of the system (22) when it is written in the
momentum representation9:

(
−k2ηνµ + kνkµ

)
eµ + imενµλρkµbλρ = 0,

(
−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ

)
bµρ + i

2m
3

ενλµρkµeρ = 0. (23)

When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.

8 As we shall see in the next section the symmetric field can acquire a mass when we include the next invariant mass term m3Σ3.
9 We are using the method developed in [31,32].
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
2 = −1

4
Ga

µν,λGa
µν,λ − 1

4
Ga

µνGa
µν,λλ + 1

4
Ga

µν,λGa
µλ,ν + 1

4
Ga

µν,νGa
µλ,λ + 1

2
Ga

µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν = 0

and describes the propagation of helicity-zero state, λ = 0.

5. Let us now see how the spectrum is changing when we add new invariant Σ (17) to the Lagrangian. With the new mass term the
Lagrangian takes the form

L = LYM + L2 + L′
2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab

µλGc
µν,λ − 1

2
g f abc(Ab

µλGc
µλ,ν + Ab

λµGc
µν,λ + Ab

µνGc
µλ,λ − Ab

λλGc
µν,µ

)
= 0,

∇ab
µ Gb

µν,λ + m
2

ενλµρGa
µρ − 1

2

(
∇ab

µ Gb
µλ,ν + ∇ab

µ Gb
λν,µ + ∇ab

λ Gb
µν,µ + ηνλ∇ab

µ Gb
µρ,ρ

)
+ g f abc Ab

µλGc
µν

+ 1
2

g f abc(Ab
µνGc

µλ + Ab
λµGc

µν + Ab
µµGc

λν − ηνλ Ab
µρ Gc

µρ

)
= 0. (20)

The corresponding free equations (g = 0) are:

∂2 Aa
ν − ∂ν∂µ Aa

µ + mενµλρ∂µ Aa
λρ = 0,

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)

+ mενλµρ∂µ Aa
ρ = 0. (21)

This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
antisymmetric part Bνλ of the rank-2 gauge field Aνλ interacts through the mass term, the symmetric part A S

νλ completely decouples
from both equations,8 therefore we arrive at the following system of equations:

∂2 Aν − ∂ν∂µ Aµ + mενµλρ∂µBλρ = 0,

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν + 2m
3

ενλµρ∂µ Aρ = 0. (22)

One can find the structure and the number of propagating modes calculating the rank of the system (22) when it is written in the
momentum representation9:

(
−k2ηνµ + kνkµ

)
eµ + imενµλρkµbλρ = 0,

(
−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ

)
bµρ + i

2m
3

ενλµρkµeρ = 0. (23)

When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.

8 As we shall see in the next section the symmetric field can acquire a mass when we include the next invariant mass term m3Σ3.
9 We are using the method developed in [31,32].
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e(1)
µ = (0,1,0,0), b(1)

γ γ́
= 1

i
M

√
!k2 + M2





0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



 ,

e(2)
µ = (0,0,1,0), b(2)

γ γ́
= −1

i
M

√
!k2 + M2





0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0



 ,

e(3)
µ =

(
0,0,0,

M
√

!k2 + M2

)
, b(3)

γ γ́
= 1

i





0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



 . (25)

These propagating modes cannot be factorized into separately vector or separately tensor solutions as it happens for the pure gauge
solutions (24). It is a genuine superposition of vector and tensor fields. Let us consider the limit M → 0. The above solutions will factorize,
into two massless vector modes e(1)

µ , e(2)
µ , of helicities λ = ±1 and helicity λ = 0 mode b(3)

γ γ́
of antisymmetric tensor. But when M $= 0, in

the rest frame !k2 = 0, these solutions represent three polarizations of the spin-1 boson.
The above analysis suggests the following physical interpretation. A massive spin-1 particle appears here as a vector field of helicities

λ = ±1 which acquires an extra polarization state absorbing antisymmetric field of helicity λ = 0, or as antisymmetric field of helicity
λ = 0 which absorbs helicities λ = ±1 of the vector field. It is sort of “dual” description of massive spin-1 particle. In order to fully justify
this phenomenon of superposition of polarizations one should develop quantum-mechanical description of tensor gauge fields and get a
deeper understanding of the corresponding path integral which is over infinitely many fields.

6. Let us consider now the next invariant in five-dimensional space–time (4 + 1) which can be constructed using totally antisymmetric
Levi-Civita epsilon tensor in combination with the generalized field strength tensors. It has the following form:

Γ3 = εµνλρσ Tr{GµνGλρ,σαα + 2Gµν,αGλρ,σα + Gµν,σ Gλρ,αα}. (26)

As one can easily check this entity is also gauge invariant, because under the gauge transformation (36) its variation vanishes: δξΓ3 = 0. It
is not a metrically independent density, because not all Lorentz indices are contracted by the epsilon tensor, part of them are contracted
by the space–time metric. In this respect it differs from the density Γ , but it keeps other important properties of density Γ which we
shall explore here. Indeed, the density Γ3 can be represented as a derivative of the vector current:

Γ3 = ∂µΞµ, Ξµ = εµνλρσ Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }. (27)

Considering the fifth component of the vector current Ξµ

Ξ ≡ Ξ4 = ε4νλρσ Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }, (28)

we shall reduce it to four dimensions.10 This is the case when the gauge fields are independent on the fifth coordinate x4. The density Ξ
is well defined in four-dimensional space–time and is gauge invariant up to a total divergence term. Indeed, its integral over the four-
dimensional space–time11

Ξ = ενλρσ

∫
d4x Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ } (29)

changes under the gauge variation (35), (36) as follows

δξΞ = ενλρσ

∫
Tr

(
−ig[Gνλξ ]Aρσαα + Gνλ

(
∇ρξσαα − ig[Aρσ ξαα] − 2ig[Aραξσα]

− 2ig[Aρσαξα] − ig[Aρααξσ ] − ig[Aρσααξ ]
)
+ 2

(
−ig[Gνλ,αξ ] − ig[Gνλξα]

)
Aρσα

+ 2Gνλ,α
(
∇ρξσα − ig[Aρσ ξα] − ig[Aραξσ ] − ig[Aρσαξ ]

)

+
(
−ig[Gνλ,ααξ ] − 2ig[Gνλαξα] − ig[Gνλξαα]

)
Aρσ + Gνλ,αα

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫
Tr ∂ρ(Gνλξσαα + 2Gνλ,αξσα + Gνλ,ααξσ )d4x = 0,

and vanishes because terms in front of ξ , ξα and ξαα cancel each other, the others after integration by part and recalling the Bianchi
identities (38), (39) reduce to the boundary terms which vanish when the gauge parameters ξσαα , ξσα and ξσ tend to zero at infinity.

The dimension of this functional is not difficult to calculate, in four dimensions the gauge fields have dimension of [mass]1, therefore
if we intend to add this new term to the action we should introduce the next mass parameter m3:

m3

2
Ξ = m3

2
ενλρσ

∫
Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }d4x, (30)

10 Here the index α can repeat the external index µ. Therefore we should separately consider the term ενλρσ Tr{Gνλ Aρσ44 + 2Gνλ,4 Aρσ4 + Gνλ,44 Aρσ } as an additional

expression in Ξ4. We have additional tensor fields in four dimensions: Aµ4 = Ãµ , Aµ44 = ˜̃Aµ , Aµν4 = Ãµν , Aµν44 = ˜̃Aµν , and for them the above invariant reduces to the
form ενλρσ Tr G̃νλ Ãρσ , which we already studded in the previous sections. In the following consideration we shall take all these additional fields equal to zero.
11 Below we are using the same Greek letters to numerate now four-dimensional coordinates.
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
2 = −1

4
Ga

µν,λGa
µν,λ − 1

4
Ga

µνGa
µν,λλ + 1

4
Ga

µν,λGa
µλ,ν + 1

4
Ga

µν,νGa
µλ,λ + 1

2
Ga

µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν = 0

and describes the propagation of helicity-zero state, λ = 0.

5. Let us now see how the spectrum is changing when we add new invariant Σ (17) to the Lagrangian. With the new mass term the
Lagrangian takes the form

L = LYM + L2 + L′
2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab

µλGc
µν,λ − 1

2
g f abc(Ab

µλGc
µλ,ν + Ab

λµGc
µν,λ + Ab

µνGc
µλ,λ − Ab

λλGc
µν,µ

)
= 0,

∇ab
µ Gb

µν,λ + m
2

ενλµρGa
µρ − 1

2

(
∇ab

µ Gb
µλ,ν + ∇ab

µ Gb
λν,µ + ∇ab

λ Gb
µν,µ + ηνλ∇ab

µ Gb
µρ,ρ

)
+ g f abc Ab

µλGc
µν

+ 1
2

g f abc(Ab
µνGc

µλ + Ab
λµGc

µν + Ab
µµGc

λν − ηνλ Ab
µρ Gc

µρ

)
= 0. (20)

The corresponding free equations (g = 0) are:

∂2 Aa
ν − ∂ν∂µ Aa

µ + mενµλρ∂µ Aa
λρ = 0,

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)

+ mενλµρ∂µ Aa
ρ = 0. (21)

This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
antisymmetric part Bνλ of the rank-2 gauge field Aνλ interacts through the mass term, the symmetric part A S

νλ completely decouples
from both equations,8 therefore we arrive at the following system of equations:

∂2 Aν − ∂ν∂µ Aµ + mενµλρ∂µBλρ = 0,

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν + 2m
3

ενλµρ∂µ Aρ = 0. (22)

One can find the structure and the number of propagating modes calculating the rank of the system (22) when it is written in the
momentum representation9:

(
−k2ηνµ + kνkµ

)
eµ + imενµλρkµbλρ = 0,

(
−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ

)
bµρ + i

2m
3

ενλµρkµeρ = 0. (23)

When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.

8 As we shall see in the next section the symmetric field can acquire a mass when we include the next invariant mass term m3Σ3.
9 We are using the method developed in [31,32].
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
2 = −1

4
Ga

µν,λGa
µν,λ − 1

4
Ga

µνGa
µν,λλ + 1

4
Ga

µν,λGa
µλ,ν + 1

4
Ga

µν,νGa
µλ,λ + 1

2
Ga

µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν = 0

and describes the propagation of helicity-zero state, λ = 0.

5. Let us now see how the spectrum is changing when we add new invariant Σ (17) to the Lagrangian. With the new mass term the
Lagrangian takes the form

L = LYM + L2 + L′
2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab

µλGc
µν,λ − 1

2
g f abc(Ab

µλGc
µλ,ν + Ab

λµGc
µν,λ + Ab

µνGc
µλ,λ − Ab

λλGc
µν,µ

)
= 0,

∇ab
µ Gb

µν,λ + m
2

ενλµρGa
µρ − 1

2

(
∇ab

µ Gb
µλ,ν + ∇ab

µ Gb
λν,µ + ∇ab

λ Gb
µν,µ + ηνλ∇ab

µ Gb
µρ,ρ

)
+ g f abc Ab

µλGc
µν

+ 1
2

g f abc(Ab
µνGc

µλ + Ab
λµGc

µν + Ab
µµGc

λν − ηνλ Ab
µρ Gc

µρ

)
= 0. (20)

The corresponding free equations (g = 0) are:

∂2 Aa
ν − ∂ν∂µ Aa

µ + mενµλρ∂µ Aa
λρ = 0,

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)

+ mενλµρ∂µ Aa
ρ = 0. (21)

This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
antisymmetric part Bνλ of the rank-2 gauge field Aνλ interacts through the mass term, the symmetric part A S

νλ completely decouples
from both equations,8 therefore we arrive at the following system of equations:

∂2 Aν − ∂ν∂µ Aµ + mενµλρ∂µBλρ = 0,

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν + 2m
3

ενλµρ∂µ Aρ = 0. (22)

One can find the structure and the number of propagating modes calculating the rank of the system (22) when it is written in the
momentum representation9:

(
−k2ηνµ + kνkµ

)
eµ + imενµλρkµbλρ = 0,

(
−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ

)
bµρ + i

2m
3

ενλµρkµeρ = 0. (23)

When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.

8 As we shall see in the next section the symmetric field can acquire a mass when we include the next invariant mass term m3Σ3.
9 We are using the method developed in [31,32].
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
2 = −1

4
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µν,λ − 1
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µν,λλ + 1

4
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µλ,ν + 1
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µν,νGa
µλ,λ + 1

2
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µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(
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νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
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µλ − 1
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Aa
λµ

)
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(
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νµ − 1
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)
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(
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µµ − 1
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Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν = 0

and describes the propagation of helicity-zero state, λ = 0.

5. Let us now see how the spectrum is changing when we add new invariant Σ (17) to the Lagrangian. With the new mass term the
Lagrangian takes the form

L = LYM + L2 + L′
2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab

µλGc
µν,λ − 1

2
g f abc(Ab

µλGc
µλ,ν + Ab

λµGc
µν,λ + Ab

µνGc
µλ,λ − Ab

λλGc
µν,µ

)
= 0,

∇ab
µ Gb

µν,λ + m
2

ενλµρGa
µρ − 1

2

(
∇ab

µ Gb
µλ,ν + ∇ab

µ Gb
λν,µ + ∇ab

λ Gb
µν,µ + ηνλ∇ab

µ Gb
µρ,ρ

)
+ g f abc Ab

µλGc
µν

+ 1
2

g f abc(Ab
µνGc

µλ + Ab
λµGc

µν + Ab
µµGc

λν − ηνλ Ab
µρ Gc

µρ

)
= 0. (20)

The corresponding free equations (g = 0) are:

∂2 Aa
ν − ∂ν∂µ Aa

µ + mενµλρ∂µ Aa
λρ = 0,

∂2
(

Aa
νλ − 1

2
Aa

λν

)
− ∂ν∂µ

(
Aa

µλ − 1
2

Aa
λµ

)
− ∂λ∂µ

(
Aa

νµ − 1
2

Aa
µν

)
+ ∂ν∂λ

(
Aa

µµ − 1
2

Aa
µµ

)
+ 1

2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)

+ mενλµρ∂µ Aa
ρ = 0. (21)

This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
antisymmetric part Bνλ of the rank-2 gauge field Aνλ interacts through the mass term, the symmetric part A S

νλ completely decouples
from both equations,8 therefore we arrive at the following system of equations:

∂2 Aν − ∂ν∂µ Aµ + mενµλρ∂µBλρ = 0,

∂2 Bνλ − ∂ν∂µBµλ + ∂λ∂µBµν + 2m
3

ενλµρ∂µ Aρ = 0. (22)

One can find the structure and the number of propagating modes calculating the rank of the system (22) when it is written in the
momentum representation9:

(
−k2ηνµ + kνkµ

)
eµ + imενµλρkµbλρ = 0,

(
−k2ηνµηλρ + kνkµηλρ − ηνµkλkµ

)
bµρ + i

2m
3

ενλµρkµeρ = 0. (23)

When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.

8 As we shall see in the next section the symmetric field can acquire a mass when we include the next invariant mass term m3Σ3.
9 We are using the method developed in [31,32].
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The second term of the Lagrangian L defines the kinetic operator and the interactions of the rank-2 gauge field Aa
µλ:

L2 + L′
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4
Ga

µν,λGa
µν,λ − 1

4
Ga

µνGa
µν,λλ + 1

4
Ga

µν,λGa
µλ,ν + 1

4
Ga

µν,νGa
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2
Ga

µνGa
µλ,νλ. (18)

Its free equation of motion is [21–23]:

∂2
(

Aa
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2
Aa
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)
− ∂ν∂µ
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Aa
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2

Aa
λµ
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− ∂λ∂µ

(
Aa
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2

Aa
µν

)
+ ∂ν∂λ

(
Aa
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2

Aa
µµ

)
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2
ηνλ

(
∂µ∂ρ Aa

µρ − ∂2 Aa
µµ

)
= 0.

This equation describes the propagation of massless modes of helicity-two and helicity-zero, λ = ±2,0, charged gauge bosons [21–23,31,32].
This can be seen by decomposition of the rank-2 gauge field into symmetric A S

µλ and antisymmetric parts Bµλ . For the symmetric tensor

gauge fields A S
νλ the equation reduces to the free Einstein–Fierz–Pauli equation, which describes the propagation of massless gauge boson

of helicity two, λ = ±2. For the antisymmetric part of the tensor field it reduces to the equation [33,34,36]
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2 + m

4
Σ. (19)

The equations of motion for the YM and rank-2 gauge fields are7:

∇ab
µ Gb

µν + m
2

ενµλρ Ga
µλ,ρ + g f abc Ab
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g f abc(Ab
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This is a coupled system of equations which involved the vector YM field and antisymmetric part of the rank-2 gauge field. Only the
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When k2 $= M2 the system (23) is off mass-shell and we have four pure gauge field solutions:

eµ = kµ, bνλ = 0;
eµ = 0, bνλ = kνξλ − kλξν . (24)

When k2 $= M2 the system (23) has seven solutions. These are four pure gauge solutions (24) and additional three solutions representing
propagating modes:

7 At this stage we keep only YM and rank-2 gauge fields in the field equations, the rank-3 gauge field is inessential for our analysis of the mass spectrum of the lower-rank
gauge fields. In the next section we shall include higher-rank gauge fields as well.
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9 We are using the method developed in [31,32].
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e(1)
µ = (0,1,0,0), b(1)

γ γ́
= 1

i
M

√
!k2 + M2





0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0



 ,

e(2)
µ = (0,0,1,0), b(2)

γ γ́
= −1

i
M

√
!k2 + M2





0 0 0 0
0 0 0 1
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0 −1 0 0



 ,

e(3)
µ =

(
0,0,0,

M
√

!k2 + M2

)
, b(3)

γ γ́
= 1

i





0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



 . (25)

These propagating modes cannot be factorized into separately vector or separately tensor solutions as it happens for the pure gauge
solutions (24). It is a genuine superposition of vector and tensor fields. Let us consider the limit M → 0. The above solutions will factorize,
into two massless vector modes e(1)

µ , e(2)
µ , of helicities λ = ±1 and helicity λ = 0 mode b(3)

γ γ́
of antisymmetric tensor. But when M $= 0, in

the rest frame !k2 = 0, these solutions represent three polarizations of the spin-1 boson.
The above analysis suggests the following physical interpretation. A massive spin-1 particle appears here as a vector field of helicities

λ = ±1 which acquires an extra polarization state absorbing antisymmetric field of helicity λ = 0, or as antisymmetric field of helicity
λ = 0 which absorbs helicities λ = ±1 of the vector field. It is sort of “dual” description of massive spin-1 particle. In order to fully justify
this phenomenon of superposition of polarizations one should develop quantum-mechanical description of tensor gauge fields and get a
deeper understanding of the corresponding path integral which is over infinitely many fields.

6. Let us consider now the next invariant in five-dimensional space–time (4 + 1) which can be constructed using totally antisymmetric
Levi-Civita epsilon tensor in combination with the generalized field strength tensors. It has the following form:

Γ3 = εµνλρσ Tr{GµνGλρ,σαα + 2Gµν,αGλρ,σα + Gµν,σ Gλρ,αα}. (26)

As one can easily check this entity is also gauge invariant, because under the gauge transformation (36) its variation vanishes: δξΓ3 = 0. It
is not a metrically independent density, because not all Lorentz indices are contracted by the epsilon tensor, part of them are contracted
by the space–time metric. In this respect it differs from the density Γ , but it keeps other important properties of density Γ which we
shall explore here. Indeed, the density Γ3 can be represented as a derivative of the vector current:

Γ3 = ∂µΞµ, Ξµ = εµνλρσ Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }. (27)

Considering the fifth component of the vector current Ξµ

Ξ ≡ Ξ4 = ε4νλρσ Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }, (28)

we shall reduce it to four dimensions.10 This is the case when the gauge fields are independent on the fifth coordinate x4. The density Ξ
is well defined in four-dimensional space–time and is gauge invariant up to a total divergence term. Indeed, its integral over the four-
dimensional space–time11

Ξ = ενλρσ

∫
d4x Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ } (29)

changes under the gauge variation (35), (36) as follows

δξΞ = ενλρσ

∫
Tr

(
−ig[Gνλξ ]Aρσαα + Gνλ

(
∇ρξσαα − ig[Aρσ ξαα] − 2ig[Aραξσα]

− 2ig[Aρσαξα] − ig[Aρααξσ ] − ig[Aρσααξ ]
)
+ 2

(
−ig[Gνλ,αξ ] − ig[Gνλξα]

)
Aρσα

+ 2Gνλ,α
(
∇ρξσα − ig[Aρσ ξα] − ig[Aραξσ ] − ig[Aρσαξ ]

)

+
(
−ig[Gνλ,ααξ ] − 2ig[Gνλαξα] − ig[Gνλξαα]

)
Aρσ + Gνλ,αα

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫
Tr ∂ρ(Gνλξσαα + 2Gνλ,αξσα + Gνλ,ααξσ )d4x = 0,

and vanishes because terms in front of ξ , ξα and ξαα cancel each other, the others after integration by part and recalling the Bianchi
identities (38), (39) reduce to the boundary terms which vanish when the gauge parameters ξσαα , ξσα and ξσ tend to zero at infinity.

The dimension of this functional is not difficult to calculate, in four dimensions the gauge fields have dimension of [mass]1, therefore
if we intend to add this new term to the action we should introduce the next mass parameter m3:

m3

2
Ξ = m3

2
ενλρσ

∫
Tr{Gνλ Aρσαα + 2Gνλ,α Aρσα + Gνλ,αα Aρσ }d4x, (30)

10 Here the index α can repeat the external index µ. Therefore we should separately consider the term ενλρσ Tr{Gνλ Aρσ44 + 2Gνλ,4 Aρσ4 + Gνλ,44 Aρσ } as an additional

expression in Ξ4. We have additional tensor fields in four dimensions: Aµ4 = Ãµ , Aµ44 = ˜̃Aµ , Aµν4 = Ãµν , Aµν44 = ˜̃Aµν , and for them the above invariant reduces to the
form ενλρσ Tr G̃νλ Ãρσ , which we already studded in the previous sections. In the following consideration we shall take all these additional fields equal to zero.
11 Below we are using the same Greek letters to numerate now four-dimensional coordinates.
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as

Page 2 of 13 Eur. Phys. J. C (2012) 72:2140

which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as

Page 2 of 13 Eur. Phys. J. C (2012) 72:2140

which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:
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,
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but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].
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ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
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which are totally symmetric with respect to the indices λ1 . . .λs. The number of symmetric

indices s runs from zero to infinity 6. The index a corresponds to the generators La of an

appropriate Lie algebra. The extended non-Abelian gauge transformation δξ (A.1), (A.2)

of the tensor gauge fields is defined in the Appendix A and comprises a closed algebraic

structure. The generalized field-strength tensors are defined as follows [38, 39, 40]:

Gµν = ∂µAν − ∂νAµ − ig[Aµ Aν ], (2.1)

Gµν,λ = ∂µAνλ − ∂νAµλ − ig( [Aµ Aνλ] + [Aµλ Aν ] ),

Gµν,λρ = ∂µAνλρ − ∂νAµλρ − ig( [Aµ Aνλρ] + [Aµλ Aνρ] + [Aµρ Aνλ] + [Aµλρ Aν ] ),
···

and transform homogeneously with respect to the extended gauge transformations δξ.

The tensor gauge fields are in the matrix representation Aab
µλ1...λs

= (Lc)abAc
µλ1...λs

=

ifacbAc
µλ1...λs

with fabc - the structure constants of the Lie algebra.

Using field-strength tensors one can construct infinite series of forms Ls invariant under

the transformations δξ. They are quadratic in field-strength tensors. The first terms are

given by the formula [38, 39, 40]:

L = LYM + L2 + ... = −
1

4
Ga

µνG
a
µν

−
1

4
Ga

µν,λG
a
µν,λ −

1

4
Ga

µνG
a
µν,λλ

+
1

4
Ga

µν,λG
a
µλ,ν +

1

4
Ga

µν,νG
a
µλ,λ +

1

2
Ga

µνG
a
µλ,νλ + ... (2.2)

The Lagrangian contains quadratic in gauge fields kinetic terms, as well as cubic and

quartic terms describing non-linear interactions of gauge fields with dimensionless coupling

constant g. The Lagrangian L is well defined in any dimension.

In studying topological properties of the extending Yang-Mills theory it is important

to define finite (not infinitesimal) gauge transformations of the tensor gauge fields. These

can be found by expansion of the “large” transformation of the gauge field Aµ(e) over

the vector variable eµ [40]. Thus the large gauge transformation of the tensor gauge fields

takes the form

AU
µ = U−AµU +

i

g
U−∂µU, (2.3)

AU
µλ = U−AµλU + U−AµUλ − U−UλU

−AµU +
i

g
(U−∂µUλ − U−UλU

−∂µU),
···

6 A priori the tensor fields have no symmetries with respect to the first index µ.
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where Uλ is the second term in the expansion of the unitary matrix U(Ξ(x, e)) over the

vector variable:

U(x, e) = U(x) + Uµ(x)e
µ + ...,

U−(x, e) = U−(x)− U−(x)Uµ(x)U
−(x)eµ + ...

The field-strength tensors transform correspondingly:

GU
µν = U−GµνU, (2.4)

GU
µν,λ = U−Gµν,λU + U−GµνUλ − U−UλU

−GµνU,
···

One can obtain the expressions for the large gauge transformations of the higher-rank

gauge fields Aa
µλ1...λs

(x) by making further expansion of the unitary matrix U(ξ(x, e)) over

the vector variable eµ. In order to recover the infinitesimal gauge transformations (A.1)

and (A.2) of the tensor fields one should substitute the infinitesimal form of the matrices

U = 1− igLa ξ
a(x), Uµ = −igLa ξ

a
µ(x), ... (2.5)

into (2.3) and (2.4). As one can see, these matrix functions provide a mapping into the

relevant gauge group G and into the corresponding algebra G.

Let us now find the flat connections, that is, the gauge field configurations which

have non-trivial space-time behavior and for which the corresponding field-strength tensors

(curvature) vanish. The YM field-strength Gµν vanishes when the vector potential is equal

to a pure gauge connection:

Aflat
µ =

i

g
U−∂µU, (2.6)

as it can be seen from the first equation in (2.3). The higher-rank field-strength tensor

Gµν,λ vanishes when the tensor field is equal to the last term of the second equation in

(2.3):

Aflat
µλ =

i

g
(U−∂µUλ − U−UλU

−∂µU). (2.7)

It is therefore a “pure gauge connection” for the tensor gauge field. A posteriori one can

become convinced that Gµν,λ indeed vanishes by calculating the field-strength tensor (2.1)

for the field configurations (2.6) and (2.7).

The physical states must be invariant under infinitesimal gauge transformation (2.5),

or, equivalently, under finite gauge transformations that are continuously connected to

the identity matrix U = 1 and to the zero vector matrices Uµ = 0. But homotopically

non-trivial gauge transformations that cannot be deformed to the identity or to the zero

8
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as



Similarly, the non-Abelian anomaly appears in the covariant divergence of the non-Abelian

left JaL
µ = ψ̄Lγµγ5σaψL or right JaR

µ = ψ̄Rγµγ5σaψR handed currents, such as

DµJaL
µ = −

1

24π2
εµνλρ∂µ Tr[σa(Aν∂λAρ − i

1

2
gAνAλAρ)]. (1.13)

The Abelian anomaly is gauge invariant, while the non-Abelian anomaly is gauge co-

variant and is given by the covariant divergence of a non-Abelian current. These lower-

dimensional densities have their higher-dimensional counterparts [6, 7, 8, 9, 11, 13, 14, 17].

In D = 2n dimensions, the UA(1) anomaly is given by a 2n-form, the higher-dimensional

analog of eq. (1.12):

d ∗ JA ∝ Tr(Gn) = d ω2n−1, (1.14)

where ω2n−1 is a generalization of the Chern-Simons form to 2n− 1 dimensions [6, 13]:

ω2n−1(A) = n

∫ 1

0

dt Tr(AGn−1
t ). (1.15)

Here, we are using a shorthand notation for the 2-form YM field-strength tensor G =

dA+ A2 of the 1-form vector field A = −igAa
µLadxµ, with Gt = tG+ (t2 − t)A2.

Our aim is to generalize the above construction (1.1), (1.6), (1.9) and (1.10) by defining

invariant densities in higher dimensions D = 2n+ 3 = 5, 7, 9, 11, . . . :

Γ2n+3(A) = Tr(GnG3) = d σ2n+2, (1.16)

where we are using a shorthand notation for the 3-form field-strength tensor G3 = dA2 +

[A,A2] of the rank-2 gauge field A2 = −igAa
µνLadxµ∧dxν and G3t = tG3+(t2− t)[A,A2].

The (2n+ 2)-form σ2n+2 is:

σ2n+2(A,A2) =

∫ 1

0

dt Tr(AGn−1
t G3t + ...+Gn−1

t AG3t +Gn
t A2). (1.17)

Here, the 4-form σ4(A) coincides with the integrand of the functional (1.6). In general,

a (2n + 2)-form σ2n+2(A) is defined in D = 2n + 2 = 4, 6, 8, 10, . . . dimensions. The last

equation is a generalization of the Chern-Simons density in 2n−1 dimensions (1.15). The

dimensionality of this density is [mass]n(n+2), and it can be used as an addition to the

(2n+2)-dimensional Lagrangian density

1

F n2−2

∫

M2n+2

σ2n+2(A,A2), (1.18)

where F is a dimensional coupling constant, very similar to [21]. The n = 1 case F
∫

M4
σ4

was considered in [37] as a gauge invariant mass generation mechanism.
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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DµJaL
µ

= − 1
24π2 εµνλρ∂µ Tr

[
σ a

(
Aν∂λAρ − i

1
2
gAνAλAρ

)]
.

(13)

The Abelian anomaly is gauge invariant, while the non-
Abelian anomaly is gauge covariant and is given by the
covariant divergence of a non-Abelian current. These lower-
dimensional densities have their higher-dimensional coun-
terparts [6–9, 11, 13, 14, 17]. In D = 2n dimensions,
the UA(1) anomaly is given by a 2n-form, the higher-
dimensional analog of Eq. (12):

d ∗ JA ∝ Tr
(
Gn

)
= dω2n−1, (14)

where ω2n−1 is a generalization of the Chern–Simons form
to 2n − 1 dimensions [6, 13]:

ω2n−1(A) = n

∫ 1

0
dt Tr

(
AGn−1

t

)
. (15)

Here, we are using a shorthand notation for the 2-form YM
field-strength tensor G = dA+A2 of the 1-form vector field
A = −igAa

µLa dxµ, with Gt = tG + (t2 − t)A2.
Our aim is to generalize the above construction (1), (6),

(9) and (10) by defining invariant densities in higher dimen-
sions D = 2n + 3 = 5,7,9,11, . . . :

Γ2n+3(A) = Tr
(
GnG3

)
= dσ2n+2, (16)

where we are using a shorthand notation for the 3-form
field-strength tensor G3 = dA2 + [A,A2] of the rank-2
gauge field A2 = −igAa

µνLa dxµ ∧ dxν and G3t = tG3 +
(t2 − t)[A,A2]. The (2n + 2)-form σ2n+2 is

σ2n+2(A,A2) =
∫ 1

0
dt Tr

(
AGn−1

t G3t + · · ·

+ Gn−1
t AG3t + Gn

t A2
)
. (17)

Here, the 4-form σ4(A) coincides with the integrand of the
functional (6). In general, a (2n + 2)-form σ2n+2(A) is de-
fined in D = 2n + 2 = 4,6,8,10, . . . dimensions. The last
equation is a generalization of the Chern–Simons density
in 2n − 1 dimensions (15). The dimensionality of this den-
sity is [mass]n(n+2), and it can be used as an addition to the
(2n + 2)-dimensional Lagrangian density

1

Fn2−2

∫

M2n+2

σ2n+2(A,A2), (18)

where F is a dimensional coupling constant, very similar to
[21]. The n = 1 case F

∫
M4

σ4 was considered in [37] as a
gauge invariant mass-generation mechanism.

We also found a second series of exact 6n-forms con-
structed only in terms of the 3-form gauge field-strength G3:

∆6n = Tr(G3)
2n = dπ6n−1, (19)

where for the (6n − 1)-form one gets the following expres-
sion:

π6n−1(A,A2) = 2n

∫ 1

0
dt Tr

(
A2G

2n−1
3t

)
. (20)

These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
mensions.

As was well understood in [6–9, 11, 13, 14, 17], the non-
Abelian anomaly (13) is associated with ω1

4, the gauge vari-
ation of the density δω5 = dω1

4 in (15) and with ω1
2n−2 in

higher dimensions. Indeed, a celebrated result for the non-
Abelian anomaly [6–9, 11, 13, 14, 17] can be obtained by
gauge variation of the ω2n−1:

δω2n−1 = dω1
2n−2, (21)

where the (2n−2)-form has the following integral represen-
tation [6]:

ω1
2n−2(ξ,A) = n(n − 1)

∫ 1

0
dt (1 − t)Str

(
ξ d

(
AGn−2

t

))
,

(22)

where ξ = ξaLa is a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n − 2 dimensions, the non-
Abelian anomaly is given by this (2n − 2)-form, the higher-
dimensional analog of Eq. (13):

D ∗ JL,R
ξ ∝ ω1

2n−2(ξ,A). (23)

Our next aim is to construct possible gauge anomalies σ 1
2n+1

and π1
6n−2 which follow from the generalized densities

σ2n+2 (17) and π6n−1 (20). These potential anomalies are
defined through the relation analogous to (21):

δσ2n+2 = dσ 1
2n+1, δπ6n−1 = dπ1

6n−2. (24)

The low-dimensional densities can be extracted directly
from (10) and from (17). When we perform a vector-like
gauge transformation ξ1, where ξ1 = ξa

µLa dxµ is a 1-form
gauge parameter (86), the corresponding densities are:

σ 1
3 (ξ1,A) = Tr(ξ1G),

σ 1
5 (ξ1,A) = Tr

(
ξ1 d

(
AdA + 1

2
A3

))
,

(25)

and when the gauge transformation is performed by a scalar
gauge parameter ξ , then

σ 1
5 (ξ,A,A2) = Tr

(
ξ d

(
AdA2 + A2 dA + 1

2
A2A2

− 1
2
AA2A + 1

2
A2A

2
))

. (26)

What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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which is a derivative of the Chern–Simons topological vec-
tor current [13, 18–20, 41–43]

Cµ = εµνλρ Tr
(

Aν∂λAρ − i
2
3
gAνAλAρ

)
. (4)

Indeed, comparing the expressions (1), (3) and (2), (4)
one can see that both entities P (A) and Γ (A) are metric-
independent, insensitive to the local variation of the fields
and are derivatives of the corresponding vector currents Cµ

and Σ l . The difference between them is that the former is
defined in four dimensions, while the latter is defined in
five. This difference in one unit of the space–time dimen-
sion originates from the fact that we have at our disposal
high-rank tensor gauge fields to build new invariants [37].

While the invariant Γ (A) and the vector current Σ l are
defined on a five-dimensional manifold, one can restrict the
latter to a lower, four-dimensional manifold. The restriction
proceeds as follows. Considering the fifth component of the
vector current Σ l

ε4nmpq Tr(GnmApq) (5)

one can see that the remaining indices will not repeat
the external index and the sum is restricted to indices of
four-dimensional space–time. Therefore, we can reduce this
functional to four dimensions, considering gauge fields in-
dependent on the fifth coordinate x4. This density is well
defined in four dimensions and is gauge invariant under in-
finitesimal gauge transformations up to a total divergence
term, as one can see below from (8). Therefore we shall con-
sider its integral over four-dimensional space–time2 [37]:

Σ(A) = 1
32π2

∫

M4

d4x ενλρσ Tr(GνλAρσ ). (6)

This entity is an analog of the Chern–Simons integral3

W(A) = g2

8π2

∫

M3

d3x εijk Tr
(

Ai∂jAk − ig
2
3
AiAjAk

)
,

(7)

but, importantly, instead of being defined in three dimen-
sions it is defined in four dimensions. Thus, the non-Abelian
tensor gauge fields allow to build a natural generalization of
the Chern–Simons characteristic in four-dimensional space–
time.

The functional Σ(A) is invariant under infinitesimal
gauge transformations up to a total divergence term. Indeed,
its gauge variation under δξ , defined in (86)–(87), is

2We are using Greek letters to numerate the four-dimensional coordi-
nates xµ (µ,ν,λ, . . . = 0,1,2,3).
3The C3 component of the topological current (4) [11, 42, 43].

δξΣ(A) ∝ ενλρσ

∫

M4

Tr
(
−ig[Gνλξ ]Aρσ

+ Gνλ

(
∇ρξσ − ig[Aρσ ξ ]

))
d4x

= ενλρσ

∫

M4

∂ρ Tr(Gνλξσ ) d4x

= ενλρσ

∫

∂M4

Tr(Gνλξσ ) dσρ = 0. (8)

Here, the first and the third terms cancel each other and
the second one, after integration by part and recalling the
Bianchi identity (88), leaves only a boundary term which
vanishes when the gauge parameter ξσ (x) tends to zero suf-
ficiently fast at the boundary. Hence, the functional is invari-
ant against small gauge transformations, but not under large
ones for which gauge transformations have a non-trivial be-
havior at the boundary. Thus, we have to find out how Σ(A)

transforms under large gauge transformations. The expres-
sion we found has the form (45):

Σ
(
AU

)
− Σ(A)

= i

32π2g

∫

M4

d4x εµνλρ∂λ Tr
(
GµνUρU−)

. (9)

It reduces to (8) for the infinitesimal gauge transformations
(32) and allows to introduce a lower-dimensional density

σ 1
3 (A,U) = εijk Tr

(
GijUkU

−)
. (10)

The expression (9) is analogous to the corresponding one of
the Chern–Simons integral [11, 13, 18–20, 41–43]:

W
(
AU

)
− W(A)

= 1
8π2

∫

M3

d3x εijk∂i Tr
(
∂jUU−Ak

)

+ 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)
,

(11)

and the density (10) to the non-Abelian anomaly in two-
dimensions [6–9, 11]:

ω1
2(A,U) = εjk Tr

(
∂jUU−Ak

)
.

Indeed, the above consideration has deep relation with
chiral anomalies appearing in gauge theories interacting
with Weyl fermions. The Abelian UA(1) anomaly appears
in the divergence of the axial U(1) current JA

µ = ψ̄γµγ5ψ ,
and in four dimensions it is given by the divergence

∂µJA
µ = − 1

16π2 εµνλρ Tr(GµνGλρ)

= − 1
4π2 εµνλρ∂µ Tr

(
Aν∂λAρ − i

2
3
gAνAλAρ

)
.

(12)

Similarly, the non-Abelian anomaly appears in the covariant
divergence of the non-Abelian left J aL

µ = ψ̄Lγµγ5σ
aψL or

right J aR
µ = ψ̄Rγµγ5σ

aψR handed currents, such as
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DµJaL
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= − 1
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gAνAλAρ

)]
.
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The Abelian anomaly is gauge invariant, while the non-
Abelian anomaly is gauge covariant and is given by the
covariant divergence of a non-Abelian current. These lower-
dimensional densities have their higher-dimensional coun-
terparts [6–9, 11, 13, 14, 17]. In D = 2n dimensions,
the UA(1) anomaly is given by a 2n-form, the higher-
dimensional analog of Eq. (12):

d ∗ JA ∝ Tr
(
Gn

)
= dω2n−1, (14)

where ω2n−1 is a generalization of the Chern–Simons form
to 2n − 1 dimensions [6, 13]:

ω2n−1(A) = n

∫ 1

0
dt Tr

(
AGn−1

t

)
. (15)

Here, we are using a shorthand notation for the 2-form YM
field-strength tensor G = dA+A2 of the 1-form vector field
A = −igAa

µLa dxµ, with Gt = tG + (t2 − t)A2.
Our aim is to generalize the above construction (1), (6),

(9) and (10) by defining invariant densities in higher dimen-
sions D = 2n + 3 = 5,7,9,11, . . . :

Γ2n+3(A) = Tr
(
GnG3

)
= dσ2n+2, (16)

where we are using a shorthand notation for the 3-form
field-strength tensor G3 = dA2 + [A,A2] of the rank-2
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µνLa dxµ ∧ dxν and G3t = tG3 +
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∫ 1

0
dt Tr

(
AGn−1

t G3t + · · ·

+ Gn−1
t AG3t + Gn
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Here, the 4-form σ4(A) coincides with the integrand of the
functional (6). In general, a (2n + 2)-form σ2n+2(A) is de-
fined in D = 2n + 2 = 4,6,8,10, . . . dimensions. The last
equation is a generalization of the Chern–Simons density
in 2n − 1 dimensions (15). The dimensionality of this den-
sity is [mass]n(n+2), and it can be used as an addition to the
(2n + 2)-dimensional Lagrangian density

1
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∫

M2n+2

σ2n+2(A,A2), (18)

where F is a dimensional coupling constant, very similar to
[21]. The n = 1 case F

∫
M4

σ4 was considered in [37] as a
gauge invariant mass-generation mechanism.

We also found a second series of exact 6n-forms con-
structed only in terms of the 3-form gauge field-strength G3:

∆6n = Tr(G3)
2n = dπ6n−1, (19)

where for the (6n − 1)-form one gets the following expres-
sion:

π6n−1(A,A2) = 2n

∫ 1

0
dt Tr

(
A2G

2n−1
3t

)
. (20)

These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
mensions.

As was well understood in [6–9, 11, 13, 14, 17], the non-
Abelian anomaly (13) is associated with ω1

4, the gauge vari-
ation of the density δω5 = dω1

4 in (15) and with ω1
2n−2 in

higher dimensions. Indeed, a celebrated result for the non-
Abelian anomaly [6–9, 11, 13, 14, 17] can be obtained by
gauge variation of the ω2n−1:

δω2n−1 = dω1
2n−2, (21)

where the (2n−2)-form has the following integral represen-
tation [6]:

ω1
2n−2(ξ,A) = n(n − 1)

∫ 1

0
dt (1 − t)Str

(
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(
AGn−2
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))
,

(22)

where ξ = ξaLa is a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n − 2 dimensions, the non-
Abelian anomaly is given by this (2n − 2)-form, the higher-
dimensional analog of Eq. (13):

D ∗ JL,R
ξ ∝ ω1

2n−2(ξ,A). (23)

Our next aim is to construct possible gauge anomalies σ 1
2n+1

and π1
6n−2 which follow from the generalized densities

σ2n+2 (17) and π6n−1 (20). These potential anomalies are
defined through the relation analogous to (21):

δσ2n+2 = dσ 1
2n+1, δπ6n−1 = dπ1

6n−2. (24)

The low-dimensional densities can be extracted directly
from (10) and from (17). When we perform a vector-like
gauge transformation ξ1, where ξ1 = ξa

µLa dxµ is a 1-form
gauge parameter (86), the corresponding densities are:

σ 1
3 (ξ1,A) = Tr(ξ1G),

σ 1
5 (ξ1,A) = Tr

(
ξ1 d

(
AdA + 1

2
A3

))
,

(25)

and when the gauge transformation is performed by a scalar
gauge parameter ξ , then

σ 1
5 (ξ,A,A2) = Tr

(
ξ d

(
AdA2 + A2 dA + 1

2
A2A2

− 1
2
AA2A + 1

2
A2A

2
))

. (26)

What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
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Abelian anomaly (13) is associated with ω1
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where ξ = ξaLa is a scalar gauge parameter and Str denotes
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Our next aim is to construct possible gauge anomalies σ 1
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and π1
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The low-dimensional densities can be extracted directly
from (10) and from (17). When we perform a vector-like
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µLa dxµ is a 1-form
gauge parameter (86), the corresponding densities are:
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and when the gauge transformation is performed by a scalar
gauge parameter ξ , then
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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and when the gauge transformation is performed by a scalar
gauge parameter ξ , then
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. (26)

What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the

Similarly, the non-Abelian anomaly appears in the covariant divergence of the non-Abelian

left JaL
µ = ψ̄Lγµγ5σaψL or right JaR

µ = ψ̄Rγµγ5σaψR handed currents, such as

DµJaL
µ = −

1

24π2
εµνλρ∂µ Tr[σa(Aν∂λAρ − i

1

2
gAνAλAρ)]. (1.13)

The Abelian anomaly is gauge invariant, while the non-Abelian anomaly is gauge co-

variant and is given by the covariant divergence of a non-Abelian current. These lower-

dimensional densities have their higher-dimensional counterparts [6, 7, 8, 9, 11, 13, 14, 17].

In D = 2n dimensions, the UA(1) anomaly is given by a 2n-form, the higher-dimensional

analog of eq. (1.12):

d ∗ JA ∝ Tr(Gn) = d ω2n−1, (1.14)

where ω2n−1 is a generalization of the Chern-Simons form to 2n− 1 dimensions [6, 13]:

ω2n−1(A) = n

∫ 1

0

dt Tr(AGn−1
t ). (1.15)

Here, we are using a shorthand notation for the 2-form YM field-strength tensor G =

dA+ A2 of the 1-form vector field A = −igAa
µLadxµ, with Gt = tG+ (t2 − t)A2.

Our aim is to generalize the above construction (1.1), (1.6), (1.9) and (1.10) by defining

invariant densities in higher dimensions D = 2n+ 3 = 5, 7, 9, 11, . . . :

Γ2n+3(A) = Tr(GnG3) = d σ2n+2, (1.16)

where we are using a shorthand notation for the 3-form field-strength tensor G3 = dA2 +

[A,A2] of the rank-2 gauge field A2 = −igAa
µνLadxµ∧dxν and G3t = tG3+(t2− t)[A,A2].

The (2n+ 2)-form σ2n+2 is:

σ2n+2(A,A2) =

∫ 1

0

dt Tr(AGn−1
t G3t + ...+Gn−1

t AG3t +Gn
t A2). (1.17)

Here, the 4-form σ4(A) coincides with the integrand of the functional (1.6). In general,

a (2n + 2)-form σ2n+2(A) is defined in D = 2n + 2 = 4, 6, 8, 10, . . . dimensions. The last

equation is a generalization of the Chern-Simons density in 2n−1 dimensions (1.15). The

dimensionality of this density is [mass]n(n+2), and it can be used as an addition to the

(2n+2)-dimensional Lagrangian density

1

F n2−2

∫

M2n+2

σ2n+2(A,A2), (1.18)

where F is a dimensional coupling constant, very similar to [21]. The n = 1 case F
∫

M4
σ4

was considered in [37] as a gauge invariant mass generation mechanism.
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Here, the 4-form σ4(A) coincides with the integrand of the
functional (6). In general, a (2n + 2)-form σ2n+2(A) is de-
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equation is a generalization of the Chern–Simons density
in 2n − 1 dimensions (15). The dimensionality of this den-
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(2n + 2)-dimensional Lagrangian density

1

Fn2−2

∫
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σ2n+2(A,A2), (18)

where F is a dimensional coupling constant, very similar to
[21]. The n = 1 case F

∫
M4

σ4 was considered in [37] as a
gauge invariant mass-generation mechanism.

We also found a second series of exact 6n-forms con-
structed only in terms of the 3-form gauge field-strength G3:

∆6n = Tr(G3)
2n = dπ6n−1, (19)

where for the (6n − 1)-form one gets the following expres-
sion:

π6n−1(A,A2) = 2n

∫ 1

0
dt Tr

(
A2G

2n−1
3t

)
. (20)

These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
mensions.

As was well understood in [6–9, 11, 13, 14, 17], the non-
Abelian anomaly (13) is associated with ω1

4, the gauge vari-
ation of the density δω5 = dω1

4 in (15) and with ω1
2n−2 in

higher dimensions. Indeed, a celebrated result for the non-
Abelian anomaly [6–9, 11, 13, 14, 17] can be obtained by
gauge variation of the ω2n−1:

δω2n−1 = dω1
2n−2, (21)

where the (2n−2)-form has the following integral represen-
tation [6]:

ω1
2n−2(ξ,A) = n(n − 1)

∫ 1

0
dt (1 − t)Str

(
ξ d

(
AGn−2

t

))
,

(22)

where ξ = ξaLa is a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n − 2 dimensions, the non-
Abelian anomaly is given by this (2n − 2)-form, the higher-
dimensional analog of Eq. (13):

D ∗ JL,R
ξ ∝ ω1

2n−2(ξ,A). (23)

Our next aim is to construct possible gauge anomalies σ 1
2n+1

and π1
6n−2 which follow from the generalized densities

σ2n+2 (17) and π6n−1 (20). These potential anomalies are
defined through the relation analogous to (21):

δσ2n+2 = dσ 1
2n+1, δπ6n−1 = dπ1

6n−2. (24)

The low-dimensional densities can be extracted directly
from (10) and from (17). When we perform a vector-like
gauge transformation ξ1, where ξ1 = ξa

µLa dxµ is a 1-form
gauge parameter (86), the corresponding densities are:

σ 1
3 (ξ1,A) = Tr(ξ1G),

σ 1
5 (ξ1,A) = Tr
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ξ1 d
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AdA + 1

2
A3

))
,

(25)

and when the gauge transformation is performed by a scalar
gauge parameter ξ , then

σ 1
5 (ξ,A,A2) = Tr

(
ξ d

(
AdA2 + A2 dA + 1

2
A2A2

− 1
2
AA2A + 1

2
A2A

2
))

. (26)

What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
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where ξ = ξaLa is a scalar gauge parameter and Str denotes
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Our next aim is to construct possible gauge anomalies σ 1
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and π1
6n−2 which follow from the generalized densities
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
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As was well understood in [6–9, 11, 13, 14, 17], the non-
Abelian anomaly (13) is associated with ω1
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where ξ = ξaLa is a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n − 2 dimensions, the non-
Abelian anomaly is given by this (2n − 2)-form, the higher-
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Our next aim is to construct possible gauge anomalies σ 1
2n+1

and π1
6n−2 which follow from the generalized densities
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defined through the relation analogous to (21):
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The low-dimensional densities can be extracted directly
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and when the gauge transformation is performed by a scalar
gauge parameter ξ , then
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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The Abelian anomaly is gauge invariant, while the non-
Abelian anomaly is gauge covariant and is given by the
covariant divergence of a non-Abelian current. These lower-
dimensional densities have their higher-dimensional coun-
terparts [6–9, 11, 13, 14, 17]. In D = 2n dimensions,
the UA(1) anomaly is given by a 2n-form, the higher-
dimensional analog of Eq. (12):

d ∗ JA ∝ Tr
(
Gn

)
= dω2n−1, (14)

where ω2n−1 is a generalization of the Chern–Simons form
to 2n − 1 dimensions [6, 13]:

ω2n−1(A) = n

∫ 1

0
dt Tr

(
AGn−1

t

)
. (15)

Here, we are using a shorthand notation for the 2-form YM
field-strength tensor G = dA+A2 of the 1-form vector field
A = −igAa

µLa dxµ, with Gt = tG + (t2 − t)A2.
Our aim is to generalize the above construction (1), (6),

(9) and (10) by defining invariant densities in higher dimen-
sions D = 2n + 3 = 5,7,9,11, . . . :

Γ2n+3(A) = Tr
(
GnG3

)
= dσ2n+2, (16)

where we are using a shorthand notation for the 3-form
field-strength tensor G3 = dA2 + [A,A2] of the rank-2
gauge field A2 = −igAa

µνLa dxµ ∧ dxν and G3t = tG3 +
(t2 − t)[A,A2]. The (2n + 2)-form σ2n+2 is

σ2n+2(A,A2) =
∫ 1

0
dt Tr

(
AGn−1

t G3t + · · ·

+ Gn−1
t AG3t + Gn

t A2
)
. (17)

Here, the 4-form σ4(A) coincides with the integrand of the
functional (6). In general, a (2n + 2)-form σ2n+2(A) is de-
fined in D = 2n + 2 = 4,6,8,10, . . . dimensions. The last
equation is a generalization of the Chern–Simons density
in 2n − 1 dimensions (15). The dimensionality of this den-
sity is [mass]n(n+2), and it can be used as an addition to the
(2n + 2)-dimensional Lagrangian density

1

Fn2−2

∫

M2n+2

σ2n+2(A,A2), (18)

where F is a dimensional coupling constant, very similar to
[21]. The n = 1 case F

∫
M4

σ4 was considered in [37] as a
gauge invariant mass-generation mechanism.

We also found a second series of exact 6n-forms con-
structed only in terms of the 3-form gauge field-strength G3:

∆6n = Tr(G3)
2n = dπ6n−1, (19)

where for the (6n − 1)-form one gets the following expres-
sion:

π6n−1(A,A2) = 2n

∫ 1

0
dt Tr

(
A2G

2n−1
3t

)
. (20)

These forms are defined in D = 6n − 1 = 5,11,17, . . . di-
mensions.

As was well understood in [6–9, 11, 13, 14, 17], the non-
Abelian anomaly (13) is associated with ω1

4, the gauge vari-
ation of the density δω5 = dω1

4 in (15) and with ω1
2n−2 in

higher dimensions. Indeed, a celebrated result for the non-
Abelian anomaly [6–9, 11, 13, 14, 17] can be obtained by
gauge variation of the ω2n−1:

δω2n−1 = dω1
2n−2, (21)

where the (2n−2)-form has the following integral represen-
tation [6]:

ω1
2n−2(ξ,A) = n(n − 1)

∫ 1

0
dt (1 − t)Str

(
ξ d

(
AGn−2

t

))
,

(22)

where ξ = ξaLa is a scalar gauge parameter and Str denotes
a symmetrized trace. In D = 2n − 2 dimensions, the non-
Abelian anomaly is given by this (2n − 2)-form, the higher-
dimensional analog of Eq. (13):

D ∗ JL,R
ξ ∝ ω1

2n−2(ξ,A). (23)

Our next aim is to construct possible gauge anomalies σ 1
2n+1

and π1
6n−2 which follow from the generalized densities

σ2n+2 (17) and π6n−1 (20). These potential anomalies are
defined through the relation analogous to (21):

δσ2n+2 = dσ 1
2n+1, δπ6n−1 = dπ1

6n−2. (24)

The low-dimensional densities can be extracted directly
from (10) and from (17). When we perform a vector-like
gauge transformation ξ1, where ξ1 = ξa

µLa dxµ is a 1-form
gauge parameter (86), the corresponding densities are:

σ 1
3 (ξ1,A) = Tr(ξ1G),

σ 1
5 (ξ1,A) = Tr

(
ξ1 d

(
AdA + 1

2
A3

))
,

(25)

and when the gauge transformation is performed by a scalar
gauge parameter ξ , then

σ 1
5 (ξ,A,A2) = Tr

(
ξ d

(
AdA2 + A2 dA + 1

2
A2A2

− 1
2
AA2A + 1

2
A2A

2
))

. (26)

What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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gauge parameter ξ , then
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2
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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What is interesting here is that σ 1
5 explicitly contains the

second-rank gauge field A2 when we perform the standard
YM infinitesimal gauge transformation ξ . Because it is de-
fined in odd dimensions it may have contribution to the
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parity-violating anomaly [52] and its descendant (δσ 1
5 =

dσ 2
4 )

σ 2
4 (ξ,η,A) = Tr

(
(dξ η + η dξ − ξ dη − dη ξ) dA2

)
(27)

may represent a potential Schwinger term in the correspond-
ing gauge algebra [8, 9].

In the next section we shall present a short introduc-
tion into the theory of non-Abelian tensor gauge fields and
discuss their small and large4 gauge transformations, their
field-strength tensors, the corresponding flat connections of
the tensor gauge fields and their Lagrangians [38–40]. In
Sect. 3, we shall derive the expression (9) for the large gauge
transformation of the functional Σ(A) and compare it with
the corresponding transformation of W(A). Equation (10)
for the descendant density σ 1

3 (A,U) will be also presented.
The corresponding integrands are the 4-form σ4 (17) and
3-form σ 1

3 (25). In Sect. 4, we present a topological invari-
ant in six dimensions and its reduction to the 5-form π5 and
4-form π1

4 . In Sect. 5, we shall derive general formulas for
the σ2n+2 given in (17) and for the π6n−1 of Eq. (20).

In conclusions, we shall discuss and compare the Pont-
ryagin–Chern–Simons densities P2n, ω2n−1 and ω1

2n−2 in
YM gauge theory with the corresponding two series of den-
sities Γ2n+3, σ2n+2, σ 1

2n+1 and ∆6n, π6n−1 and π1
6n−2 in

the extended model containing non-Abelian tensor gauge
fields. We shall also discuss different models suggested in
the literature describing the dynamics of an antisymmetric
non-Abelian tensor gauge field. The existing no-go theorem
[44], which essentially limited possible non-Abelian mod-
els, can be circumvent only if the model contains infinitely
many tensor gauge fields.

We have also included three appendices containing the
basic formulas of tensor gauge fields that we use in the
text and a short reminder on the winding number and non-
Abelian anomaly.

2 Small and large gauge transformations

Let us shortly overview the model of massless tensor gauge
fields Lagrangian suggested in [38–40]. The gauge fields are
defined as rank-(s + 1) tensors

Aa
µλ1...λs

(x),

which are totally symmetric with respect to the indices
λ1 . . .λs . The number of symmetric indices s runs from zero
to infinity.5 The index a corresponds to the generators La

4The transformations that are homotopic to the identity are called
“small”, while those that cannot be deformed to the identity are called
“large” [11, 42, 43].
5A priori the tensor fields have no symmetries with respect to the first
index µ.

of an appropriate Lie algebra. The extended non-Abelian
gauge transformation δξ (86), (87) of the tensor gauge fields
is defined in Appendix A and comprises a closed algebraic
structure. The generalized field-strength tensors are defined
as follows [38–40]:

Gµν = ∂µAν − ∂νAµ − ig[AµAν],
Gµν,λ = ∂µAνλ − ∂νAµλ − ig

(
[AµAνλ] + [AµλAν]

)
,

Gµν,λρ = ∂µAνλρ − ∂νAµλρ − ig
(
[AµAνλρ]

+ [AµλAνρ] + [AµρAνλ] + [AµλρAν]
)
,

. . . . . .

(28)

and transform homogeneously with respect to the extended
gauge transformations δξ . The tensor gauge fields are
in the matrix representation Aab

µλ1...λs
= (Lc)

abAc
µλ1...λs

=
if acbAc

µλ1...λs
with f abc the structure constants of the Lie

algebra.
Using field-strength tensors one can construct infinite se-

ries of forms Ls invariant under the transformations δξ . They
are quadratic in field-strength tensors. The first terms are
given by the formula [38–40]:

L = LYM + L2 + · · ·

= −1
4
Ga

µνG
a
µν

− 1
4
Ga

µν,λG
a
µν,λ − 1

4
Ga

µνG
a
µν,λλ

+ 1
4
Ga

µν,λG
a
µλ,ν + 1

4
Ga

µν,νG
a
µλ,λ + 1

2
Ga

µνG
a
µλ,νλ

+ · · · (29)

The Lagrangian contains quadratic in gauge fields kinetic
terms, as well as cubic and quartic terms describing non-
linear interactions of gauge fields with dimensionless cou-
pling constant g. The Lagrangian L is well defined in any
dimension.

In studying topological properties of the extending Yang–
Mills theory it is important to define finite (not infinitesimal)
gauge transformations of the tensor gauge fields. These can
be found by expansion of the “large” transformation of the
gauge field Aµ(e) over the vector variable eµ [40]. Thus the
large gauge transformation of the tensor gauge fields takes
the form

AU
µ = U−AµU + i

g
U−∂µU,

AU
µλ = U−AµλU + U−AµUλ − U−UλU

−AµU

+ i

g

(
U−∂µUλ − U−UλU

−∂µU
)
,

. . . . . .

(30)

where Uλ is the second term in the expansion of the unitary
matrix U (Ξ(x, e)) over the vector variable:
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be found by expansion of the “large” transformation of the
gauge field Aµ(e) over the vector variable eµ [40]. Thus the
large gauge transformation of the tensor gauge fields takes
the form

AU
µ = U−AµU + i

g
U−∂µU,

AU
µλ = U−AµλU + U−AµUλ − U−UλU

−AµU

+ i

g

(
U−∂µUλ − U−UλU

−∂µU
)
,

. . . . . .

(30)

where Uλ is the second term in the expansion of the unitary
matrix U (Ξ(x, e)) over the vector variable:

  New gauge anomalies and topological invariants in various 
dimensions  
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δΓ2n+3 = δ dσ2n+2 = dδσ2n+2 = 0,

δ∆6n = δ dπ6n−1 = dδπ6n−1 = 0.

Thus locally there must exist a certain (2n + 1)-form
σ 1

2n+1(ξ,A) and (6n − 2)-form π1
6n−2(ξ,A) such that

δσ2n+2(A) = dσ 1
2n+1(ξ,A),

δπ6n−1(A) = dπ1
6n−2(ξ,A).

(78)

Here the superscript of σ 1
2n+1(ξ,A) and π1

6n−2(ξ,A) indi-
cates that these forms are of first order in the gauge parame-
ters.

These anomalies for lower dimensions are already known
through the calculations we made in the previous sections.
Indeed, we calculated the global gauge variation of the sec-
ondary forms σ4 and π5 and found that they are total deriva-
tives, thus from (46) for infinitesimal gauge transformations
(32) it follows that

σ 1
3 (ξ1,A) = Tr(ξ1G), (79)

where ξ1 is a 1-form gauge parameter ξ1 = Laξa
µ dxµ, and

from (55) we can extract π1
4 :

π1
4 (ξ1,A) = Tr(ξ1G3). (80)

In both cases there is no dependence from the scalar gauge
parameter ξ = Laξa .

In order to calculate the variation of the secondary char-
acteristics in higher dimensions we need the formulas for
the gauge transformation of the various fields involved in
the expressions for σ2n+2 (64) and π6n−1 (74), which read

δξA = dξ + [A, ξ ],
δξA2 = dξ1 + Aξ1 + ξ1A + [A2, ξ ],
δξ dA = [dA, ξ ] − Adξ − dξA,

δξ dA2 = [dA, ξ1] − [A,dξ1] + [dA2, ξ ] + [A2, dξ ],
δξGt = [Gt, ξ ] +

(
t2 − t

)
(Adξ + dξ A),

δξG3t = [G3t , ξ ] + [Gt, ξ1]
+

(
t2 − t

)(
[A,dξ1] + [A2, dξ ]

)
.

(81)

Let us calculate the variation of σ6 (69) using the above for-
mulas. It turns out that there are many cancelations between
different terms, so that at the end we get two contributions,
one linear in dξ and the other—in dξ1. The term linear in
the differential of the 1-form gauge parameter dξ1 is

δσ6 = Tr
(

dξ1 G2 − 1
2
A2 dξ1 G + 1

2
Adξ1 AG

− 1
2

dξ1 A2G + 1
2
A4 dξ1

)

= Tr
(

dξ1 d

(
AdA + 1

2
A3

))
= dσ 1

5 ,

therefore

σ 1
5 (ξ1,A) = Tr

(
ξ1 d

(
AdA + 1

2
A3

))
. (82)

This expression coincides with the standard gauge anomaly
in four dimensions ω1

4 (57), with the only difference that it
is multiplied by ξ1, which is here a 1-form. The second term
linear in dξ is

δσ6 = Tr(dξ GG3 + dξ G3G

− 1
2

(
dξ A2G3 + Adξ AG3 + A2 dξG3

)

− 1
2
(dξ AA2G + Adξ A2G − dξ A2AG

− AA2 dξ G + A2 dξ AG + A2Adξ G)

+ 1
2

(
dξ A3A2 + Adξ A2A2 + A2 dξ AA2

+ A3 dξ A2
)

= Tr
(

dξ d

(
AdA2 + A2 dA

+ 1
2

(
A2A2 − AA2A + A2A

2)
))

= dσ 1
5 ,

and therefore

σ 1
5 (ξ,A,A2) = Tr

(
ξ d

(
AdA2 + A2 dA

+ 1
2

(
A2A2 − AA2A + A2A

2)
))

= Tr
(

ξ d

(
AG3 + A2G

− 1
2

(
A2A2 − AA2A + A2A

2)
))

. (83)

The total form σ 1
5 is a sum of the two expressions above,

(82) and (83). What is interesting here is that σ 1
5 explicitly

contains the second-rank gauge field A2 when we perform
the standard YM infinitesimal gauge transformation ξ . Be-
cause it is defined in odd dimensions it may have contribu-
tion to the parity-violating anomaly [52] and its descendant
(δσ 1

5 = dσ 2
4 ):

σ 2
4 (ξ,η,A) = Tr

(
(dξ η + η dξ − ξ dη − dη ξ) dA2

)
(84)

may represent a potential anomalous Schwinger term in the
corresponding gauge algebras [8]. Here the superscript of
σ 2

4 (ξ,η,A) indicates that this form is of second order in the
gauge parameters.

6 Conclusions

In conclusion let us compare the Pontryagin–Chern–Simons
densities P2n, ω2n−1 and ω1

2n−2 in YM gauge theory with
the corresponding densities Γ2n+3, σ2n+2, σ 1

2n+1 and ∆6n,
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π6n−1, π1
6n−2 in the extended YM theory. The new char-

acteristic classes are local forms defined on the space–time
manifold and constructed from the curvature 2-form G and
3-form G3:

Γ2n+3 = Tr
(
GnG3

)
= dσ2n+2,

∆6n = Tr(G3)
2n = dπ6n−1.

(85)

These characteristic classes are closed forms, but not glob-
ally exact. The secondary characteristic classes σ2n+2 and
π6n−1 can be expressed in integral form (64) and (74) in
analogy with the Chern–Simons form (67). Their gauge
variation can also be found, yielding the potential anoma-
lies in gauge field theory. The above general considerations
should be supplemented by an explicit calculation of loop
diagrams involving chiral fermions. The argument in favor
of the existence of these potential anomalies is based on the
fact that they fulfill Wess–Zumino consistency conditions.
At the same time, these invariant densities constructed on
the space–time manifold have their own independent value
since they suggest the existence of new invariants character-
izing topological properties of a manifold.

The Abelian version of the invariant Σ(A) was inves-
tigated earlier in [28–35, 53, 54]. Attempts to construct
a non-Abelian invariant in a similar way have come up
with difficulties because they involve non-Abelian gener-
alization of gauge transformations of antisymmetric fields
[44, 55, 56]. The no-go theorem [44] implies that without
additional auxiliary fields the gauge transformations cannot
form a closed group. And, indeed, the gauge transforma-
tions of non-Abelian tensor gauge fields δξ (86) cannot be
limited to a YM 1-form and rank-2 antisymmetric field. In-
stead, the antisymmetric tensor is extended by a symmetric
rank-2 gauge field, so that together they form a gauge field
Aa

µν which transforms according to (86) and is a fully prop-
agating field. It is also important that one should include all
high-rank gauge fields Aa

µλ1...λs
in order to be able to close

the group of gauge transformations and to construct an in-
variant Lagrangian.
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Appendix A: Tensor gauge fields

The extended non-Abelian gauge transformation δξ of ten-
sor gauge fields is defined by the equations [38–40]:

δξAµ = ∂µξ − ig[Aµ, ξ ]
δξAµν = ∂µξν − ig[Aµ, ξν] − ig[Aµν, ξ ]
δξAµνλ = ∂µξνλ − ig[Aµ, ξνλ] − ig[Aµν, ξλ]

− ig[Aµλ, ξν] − ig[Aµνλ, ξ ],
. . . . . .

(86)

where ξa
λ1...λs

(x) are totally symmetric gauge parameters,
and comprises a closed algebraic structure. The tensor
gauge fields are in the matrix representation Aab

µλ1...λs
=

(Lc)
abAc

µλ1...λs
= if acbAc

µλ1...λs
with f abc—the structure

constants. The generalized field-strength tensors (28) trans-
form homogeneously under the extended gauge transforma-
tions δξ :

δGa
µν = −ig[Gµνξ ],

δGa
µν,λ = −ig

(
[Gµν,λξ ] + [Gµνξλ]

)
,

δGa
µν,λρ = −ig

([
Gb

µν,λρξ
]
+ [Gµν,λξρ]

+ [Gµν,ρξλ] + [Gµνξλρ]
)
,

. . . . . .

(87)

In the YM theory the Bianchi identity is

[∇µ,Gνλ] + [∇ν,Gλµ] + [∇λ,Gµν] = 0, (88)

and for the higher-rank field-strength tensors Gνλ,ρ and
Gνλ,ρσ the Bianchi identities are

[∇µ,Gνλ,ρ] − ig[Aµρ,Gνλ] + [∇ν,Gλµ,ρ] − ig[Aνρ,Gλµ]
+ [∇λ,Gµν,ρ] − ig[Aλρ,Gµν] = 0, (89)

[∇µ,Gνλ,ρσ ] − ig[Aµρ,Gνλ,σ ] − ig[Aµσ ,Gνλ,ρ]
− ig[Aµρσ ,Gνλ] + cyc.perm.(µνλ) = 0 (90)

and so on.

Appendix B: Winding number

The variation of the CS term under large gauge transfor-
mation can be computed by using parametrization (35) for
the SU(2) group elements [41–43]. We used the mathemat-
ica program “Exterior Differential Calculus” developed by
Sotirios Bonanos [57] to evaluate the wedge products

W
(
AU

)
− W(A)

= 1
24π2

∫

M3

d3x εijk Tr
(
U−∂iUU−∂jUU−∂kU

)

= 1
24π2

∫

M3

Tr
(
U− dU ∧ U− dU ∧ U− dU

)

= 1
2π2

∫

M3

sin2 |ξ |
|ξ |2 dξ1 ∧ dξ2 ∧ dξ3
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which can be written using the symmetrized trace, as

Ξ2n+6 = Str(GnG6 + nGn−1G2
4) = dφ2n+5. (2.4)

The lower dimensional forms linear in G8 are

Υ10 = Tr(GG8 + 3G4G6) = d"9,

Υ12 = Tr(G2G8 + 3GG4G6 + 3GG6G4 + 2G3
4) = d"11,

........... ................................. (2.5)

and so on.

The general analysis of possible forms will be presented in the following sections,

but already at this stage one can see that there is a reach class of invariant densities

which are relevant for the description of possible gauge anomalies. At the same time,

integrals of these forms over the corresponding space-time coordinates provides us with

new topological Lagrangians. In particular, one can define topological field theories,

generalizing the Chern-Simons quantum field theory [28, 29, 30, 31, 32, 33, 34, 35, 36, 37,

38], in which the correlation functions have support on two-dimensional surfaces M i
2 and

knots Cj

Z(M,M i
2, C

j, R) =

∫

DADA2e
ik

∫
M
σ2n+2(A,A2)

∏

i,j

TrRi
e
i
∮
Mi

2
A2
TrRj

ei
∮
Cj A, (2.6)

where σ2n+2 is defined in (1.6) and k is a parameter, or on three-dimensional manifolds

Z(M,M i
3, C

j, R) =

∫

DADA3e
ik

∫
M
ψ2n+3(A,A3)

∏

i,j

TrRi
e
i
∮
Mi

3
A3
TrRj

ei
∮
Cj A (2.7)

as well as on higher dimensional ones, ψ2n+3 is defined in (1.8). In particular, for the

partition function Z(M) in four dimensions [22, 23], we get

Z(M) =

∫

DADA2e
ik

∫
M4

σ4 =

∫

DADA2e
ik

∫
M4

Tr(GA2) (2.8)

and in the large k limit the contribution to the path integral is dominated from the points

of stationary phase which are, in the given case, the flat connections

G = dA+ A2 = 0, G3 = dA2 + [A,A2] = 0. (2.9)

The solutions of the first equation are well known Aflat = g−1dg, while the solutions of

the second one have been found in [23]

Aflat
2 = g−1dg1 − g−1g1g

−1dg.

With these solutions in hands one can calculate the Gaussian integrals in (2.8) and express

the partition function Z in terms of determinants of certain operators. The details will

be given elsewhere.

4



and G4 = dA3 + {A,A3}3. It turns out that the introduction of Str in the above equations leads to

very crucial simplifications in all our subsequent derivations. For compact notation, when some of

the entries of Str are the same, we write them in power form. The second series of forms is defined

in D = 2n+ 6 dimensions [21]:

Ξ2n+6 = Str(G6, G
n) + nStr(G2

4, G
n−1) = dφ2n+5. (1.8)

The general expression for the secondary (2n+5)-form φ2n+5 will be constructed in this article. The

third series of invariant closed forms found in this article Υ2n+8 in D = 2n+ 8 dimensions is

Υ2n+8 = Str(G8, G
n) + 3nStr(G4, G6, G

n−1) + n(n− 1)Str(G3
4, G

n−2) = dρ2n+7. (1.9)

Its secondary form ρ2n+7 will be presented in the next sections.

All forms Φ2n+4, Ξ2n+6 and Υ2n+8 are analogous to the Pontryagin-Chern-Simons densities P2n in

the YM gauge theory (1.1) in the sense that they are gauge invariant, closed and metric independent.

Our aim is to investigate this rich class of topological invariants of extended gauge theory as well as

to find out potential gauge anomalies performing transgressions analogous to (1.1) and (1.3):

P2n ⇒ ω2n−1 ⇒ ω1
2n−2. (1.10)

Therefore we shall perform the following transgressions:

Φ2n+4 ⇒ ψ2n+3 ⇒ ψ1
2n+2,

Ξ2n+6 ⇒ φ2n+5 ⇒ φ1
2n+4, (1.11)

Υ2n+8 ⇒ ρ2n+7 ⇒ ρ12n+6.

We shall find explicit expressions for these primary invariants in terms of higher order polynomials

of the curvature forms on a vector bundle. The most difficult challenge will be the evaluation and

differentiation of the very complicated noncommutative polynomial expressions as well as the search

of the most simple expressions for the secondary forms. The secondary forms are not uniquely

defined. Indeed, the secondary form ψ2n+3 is defined modulo the exterior derivative of an arbitrary

(2n + 2)-form ψ2n+3 ! ψ2n+3 + dα2n+2, the form φ2n+5 modulo the exterior derivative of a (2n+ 4)-

form φ2n+5 ! φ2n+5 + dβ2n+4 and the form ρ2n+7 modulo the exterior derivative of a (2n + 6)-form

ρ2n+7 ! ρ2n+7 + dγ2n+6. When the difference of two closed forms is an exact form, they are said to

be cohomologous to each other. Therefore the problem is to find out the most simple representatives

in the set of equivalence classes. Conveniently chosen exact forms will dramatically simplify the

3In the Appendix one can find the definition of tensor gauge fields and the corresponding curvature forms.
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