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Part I. Stäckel spaces and Shapovalov wave spacetimes

Let us recall the main statements of the Stäckel spaces theory.

Definition
Let Vn be a n–dimensional Riemannian space with metric tensor gij . The
Hamilton – Jacobi equation

gijS,iS,j = m2 i, j = 1, ...n (1)

can be integrated by complete separation of variables method if
co-ordinate set {ui} exists for which complete integral can be presented in
the form:

S =

n∑
i=1

ϕi(u
i, λk) (2)

where λ1...λn – is the essential parameter.
Vn is called the Stäckel space if the Hamilton–Jacobi equation (1) can be
integrated by complete separation of variables method.
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The main theorem for the theory of Stäckel spaces

Theorem
Let Vn be the Stäckel space. Then gij in privileged co-ordinate set can be
shown in the form

gij = (Φ−1)νnG
ij
ν ,

Gij
ν = Gij

ν (u
ν), Φν

µ = Φν
µ(u

µ) (3)

Gij
ν = δiνδ

j
νεν(u

ν) + (δiνδ
j
p + δjνδ

i
p)G

νp
ν (uν) + δipδ

j
qh

pq
ν (uν),

p, q = 1, ...N, ν, µ = N + 1, ..., n.

where Φν
µ(u

µ) – is called the Stäckel matrix.
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The first integrals of Hamilton-Jacobi equation in Stäckel spaces

Geodesic equations of Stäckel spaces admit the first integrals that
commutes pairwise with respect to the Poisson bracket

X
µ

= (Φ−1)νµ(ενp
2
ν + 2Gνp

ν pppν + hpqν pppq),

Y
p
= Y

p

ipi, (4)

p, q = 1, ...N ; ν, µ = N + 1, ..., n.

Φν
µ(u

µ) – is called the Stäckel matrix,
functions εν , G

νp
ν , hpqν depends only from uν , pi is momentum.
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Killing fields of Stäckel spaces

If we write the functions Xν , Yp in the form:

X
ν
= X

ν

ijpipj , Y
p
= Y

p

ipi (5)

then
X
ν

(ij;k) = Y
p

(i;j) = 0

(the semicolon denotes the covariant derivative and the brackets denote
symmetrization).
Therefore Yp i, Xν

ij are the components of vector and tensor Killing
fields respectively.

Definition

Pairwise commuting Killing vectors Yp i, where p = 1, ...N and Killing
tensors Xν

ij , where ν = N + 1, ...n form a complete set of the type
(N.N0), where

N0 = N − rank||Y
p

i
Y
q

i||
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Stäckel spaces and Shapovalov spacetimes

Theorem
A necessary and sufficient geometrical criterion of a Stäckel space is the
presence of a complete set of Killing fields of the type (N.N0).

Then the Hamilton-Jacobi equation can be integrated by the complete
separation of variables method if and only if the complete set of the first
integrals exists.

Definition
Space - time is called a Stäckel one of the type (N.N0) if the complete set
of the type (N.N0) exists.

Definition
Stäckel spacetime whose metric in a privileged coordinate system depends
on a null (wave) variable (along which the interval vanishes) is called a
Shapovalov wave spacetime.
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Part II. Pure radiation in spacetime models that admit integration of
the eikonal equation by the separation of variables method

In this part of report we propose an approach to the modeling of spacetime
with pure radiation based on approach with the following assumptions:

Assumption I
Realistic theory of gravity is a metric theory, i.e. gravity is modeled by a
metric tensor, and test particles and radiation move along the geodesic
lines of spacetime;

Assumption II
The law of conservation of energy-momentum of matter is satisfied;

Assumption III
To construct exact integrable models, we will use spaces that allow the
integration of the eikonal equation by the method of separation of variables.
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The spacetime models with radiation

The energy-momentum tensor of pure radiation:

Tij = εLiLj , (6)

where ε – energy density and Li – wave vector of radiation.
The wave vector Li is an isotropic vector and satisfies the norm condition:

gijLiLi = 0. (7)

The energy-momentum conservation law:

∇iTij = 0. (8)

where ∇i is the covariant derivative.
Below are listed the solutions for all types of this spacetimes without the
use of field equations of the concrete theory of gravitation.
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The eikonal equation and separation of variables

The eikonal equation

gij∇iΨ∇jΨ = 0. (9)

Definition
Let Vn be a n–dimensional Riemannian space with metric tensor gij . The
eikonal equation (9) can be integrated by complete separation of
variables method if co-ordinate set {ui} exists for which complete
integral can be presented in the "separated" form:

Ψ =

n∑
i=1

ψi(u
i, λ1, ..., λn) (10)

where λ1...λn – is the essential parameter.

Such spaces are called the conformally Stäckel spaces.
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Conformally Stäckel spacetimes (3.1) type

Conformally Stäckel spacetimes (3.1) type admits 3 commuting Killing
vectors Y i

(p) (p = 1, 3), but rank |Y i
(p)gijY

j
(q)| = 2. In a privileged

coordinate system the metric of a conformally Stäckel spacetimes (3.1)
type can be written in the following form, where the variable x0 is a null
("wave") variable:

gij =
1

∆


0 1 a0 b0
1 0 0 0
a0 0 c0 f0
b0 0 f0 d0

 , (11)

where ∆ = ∆(x0, x1, x2, x3) and a0, b0, c0, d0, f0 are functions of a
variable x0.
The wave vector of the radiation has the form:

L0 = L0(x
0), L1 = α, L2 = β, L3 = γ,

α, β, γ − const.
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Conformally Stäckel spacetimes (3.1) type

From the normalization condition and the conservation equations we
obtain: Li =

(
L0(x

0), α, β, γ
)
, α, β, γ − const, (12)

L0 =
−(β2c0 + 2βγf0 + γ2d0)

2 (α+ βa0 + γb0)
. (13)

For the energy density of radiation we obtain:

ε = F (X,Y, Z)∆
√

−det gij/(α+ βa0 + γb0), (14)

X = x1 −
∫

L0

(α+ βa0 + γb0)
dx0,

Y = x2 −
∫

(a0L0 + βc0 + γf0)

(α+ βa0 + γb0)
dx0,

Z = x3 −
∫

(b0L0 + βf0 + γd0)

(α+ βa0 + γb0)
dx0,

where F (X,Y, Z) is an arbitrary function of its variables.
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Conformally Stäckel spacetimes (2.1) type

Conformally Stäckel spacetimes (2.1) type admits two commuting Killing
vectors Y i

(p) (p = 1, 2), but rank |Y i
(p)gijY

j
(q)| = 1. In a privileged

coordinate system the metric of a conformally Stäckel spacetimes (2.1) type
can be written in the following form, where x1 is a null ("wave") variable:

gij =
1

∆


1 0 0 0
0 0 f1(x

1) 1
0 f1(x

1) A B
0 1 B C

 , (15)

∆ = ∆(x0, x1, x2, x3), A = a0(x
0) + a1(x

1),

B = b0(x
0) + b1(x

1), C = c0(x
0) + c1(x

1).

The wave vector of radiation Li has the form:

L0 = L0(x
0), L1 = L1(x

1),

L2 = α, L3 = β, α, β, γ − const. (16)
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Conformally Stäckel spacetimes (2.1) type

The wave vector of radiation has the form:

Li =
(
L0(x

0), L1(x
1), α, β

)
, α, β, γ − const,

L0 =
√
γ − α2a0 − 2αβb0 − β2c0, (17)

L1 = (−γ − α2a1 − 2αβb1 − β2c1)/
(
2 (αf1 + β)

)
.

The radiation energy density has the form:

ε =
F (X,Y, Z)∆

√
−det gij

L0(αf1 + β)
, (18)

X =

∫
dx0

L0
−
∫

dx1

(αf1 + β)
,

Y = x2 −
∫

(αa0 + βb0)

L0
dx0 −

∫
(αa1 + βb1 + f1L1)

αf1 + β
dx1,

Z = x3 −
∫

(αb0 + βc0)

L0
dx0 −

∫
(αb1 + βc1 + L1)

αf1 + β
dx1,

where F (X,Y, Z) is an arbitrary function of its variables.
Konstantin Osetrin Exact models of gravitational waves

11th MATHEMATICAL PHYSICS MEETING[2ex] Belgrad[2ex] September 05, 2024
14 / 40



Conformally Stäckel spacetimes (1.1) type

Conformally Stäckel spacetimes (1.1) type admits one Killing vector. In a
privileged coordinate system the metric can be written in the following
form, where x1 is a null ("wave") variable:

gij =
1

∆


Ω V 1 0 0
V 1 0 0 0
0 0 V 2 0
0 0 0 V 3

 , (19)

∆ = ∆(x0, x1, x2, x3),

V 1 = t2(x
2)− t3(x

3), V 2 = t3(x
3)− t1(x

1),

V 3 = t1(x
1)− t2(x

2), Ω = ωµ(x
µ)V µ, µ, ν = 1...3.

The wave vector of radiation has the following "separated"form:

Li =
(
α,L1(x

1), L2(x
2), L3(x

3)
)
, α− const. (20)
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Conformally Stäckel spacetimes (1.1) type

The wave vector of radiation has the form:

L0 = α, L1 =
1

2α
(βt1 − α2ω1 + γ), α, β, γ − const,

L2 =
√
βt2 − α2ω2 + γ, L3 =

√
βt3 − α2ω3 + γ. (21)

The energy density of the radiation has the form:

ε = F (X,Y, Z)∆
√
−det gij/(L2 L3), (22)

X = x0 − 1

α

∫
(L1 + αω1) dx

1 − α

(∫
ω2

L2
dx2 +

∫
ω3

L3
dx3
)
,

Y = − 1

α

∫
t1 dx

1 +

∫
t2
L2

dx2 +

∫
t3
L3

dx3,

Z =
x1

α
+

∫
dx2

L2
+

∫
dx3

L3
,

where F (X,Y, Z) is an arbitrary function of its variables.
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Conclusion on Part II: Pure radiation in spacetime models that admit
integration of the eikonal equation by the separation of variables
method

I. For spacetime models with pure radiation we suggest a method for
obtaining analytical solutions in any metric theories of gravity based on
the use of coordinate systems that admit separation of variables in the
eikonal equation.

II. The method is based on integrating the energy-momentum
conservation equations.

III. In the report we present a classification of the solutions of the
energy-momentum conservation equations for all types of spacetimes that
allow the separation of variables in the eikonal equation.
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Part III. Shapovalov gravitational wave exact solutions for spatially
homogeneous models of Bianchi universes

Let us formulate the problem of constructing models of a Bianchi universes
that allow gravitational wave exact solutions.
We assume that:

the metric of spacetime is a plane-wave metric, that is, there exists a
coordinate system where the metric depends only on one null wave
variable;
the spacetime under consideration is spatially homogeneous, that is,
there exists a subgroup of spacetime isometries with 3-dimensional
space-like orbits;
the metric of spacetime satisfies the equations of the theory of
gravitation (Einstein’s vacuum equations).

It is required to find the explicit form of the spacetime metric under all the
conditions described.
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Plane wave spacetimes metric

Let us consider the Shapovalov wave space for the case when there is a
coordinate system with respect to which the metric depends on only one
null variable

dS2 = gij dx
idxj , gij = gij(x

0), i, j, k = 0...3; (23)

where x0 is a null variable, i.e.

dS = 0 for dx0 ̸= 0 and dxp = 0, p, q, r = 1...3.

This Shapovalov metric can be represented in the following general form:

dS2 = 2dx0dx1 + gab(x
0)
(
dxa + ga(x0)dx1

)(
dxb + gb(x0)dx1

)
,

a, b, c = 2, 3. (24)
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Plane wave Einstein’s spacetimes metric

Substituting the metric (24) in the Einstein’s equations Rab = 0 it turns
out that ga are constants and the metric can be represented as:

dS2 = 2 dx0dx1 + gab(x
0) dxa dxb, a, b = 2, 3; (25)

For the metric (25) there remains only one component of the Ricci tensor
R00, that does not vanish identically.

Below, we consider the metric of a plane gravitational wave (25) for the
case when spacetime is spatially homogeneous.
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Symmetries of plane wave models of spatially homogeneous
spacetimes

The model of spacetime considered admits 3 commuting Killing
vectors Y i

(p). In a privileged coordinate system we have:

Y i
(0) = (0, 1, 0, 0) , (26)

Y i
(1) = (0, 0, 1, 0) , (27)

Y i
(2) = (0, 0, 0, 1) , (28)

The vector Y i
(0) is a null vector, and the vectors Y i

(1) and Y i
(2) are spacelike

vectors.
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The additional spacelike Killing vector

The one additional Killing vector, which can provides the spatial
homogeneity of the model, must belong to two basic types:

Type A: Y i
(3) =

(
−x0, x1, ax2 + bx3, ãx2 + b̃x3

)
, (29)

Type B: Y i
(3) =

(
1, 1, ax2 + bx3, ãx2 + b̃x3

)
, (30)

where a, ã, b, b̃ are constants.
Then Killing vectors Y i

(1), Y
i
(2), Y

i
(3) can provide spatial homogeneity of the

model.
As follows from Einstein’s vacuum equations, type B leads to
contradictions. Therefore, below only type A is considered.
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Spatially homogeneous wave model class A1

The additional Killing vector for this class of spacetimes has the following
form:

Y i
(3) =

(
−x0, x1, λ2x2, λ3x3

)
, (31)

where x0 is a null wave variable and λ2, λ2 – constants.

The commutation relations for the Killing vectors defining a subgroup of
spatial isometry in the class A1 have the form:[

Y(1), Y(2)
]

= 0, (32)[
Y(1), Y(3)

]
= λ2Y(1), (33)[

Y(2), Y(3)
]

= λ3Y(2). (34)
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Spatially homogeneous wave metric class A1

From the Killing equations we obtain the following form of metric

gij =


0 1 0 0
1 0 0 0

0 0 x02λ2

σ2 −αx0λ2+λ3

σ2

0 0 −αx0λ2+λ3

σ2
x02λ3

σ2

 , (35)

where α, λ2, λ3 are constant parameters of model, x0 is a null wave
variable.

g = det gij =− x0
2(λ2+λ3)

σ2
, σ2 = 1− α2,

−1 < α < 1, 0 < σ2 ≤ 1.

Non-flat spacetimes of class A1 are of type VIa according to Bianchi’s
classification and type N according to Petrov’s classification.
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Spatially homogeneous wave models class A2

The additional Killing vector for this class of spacetimes has the following
form:

Y i
(3) =

(
−x0, x1, λx2, x2 + λx3

)
, (36)

where x0 is a null wave variable, λ is a constant.
The commutation relations for the class A2 have the form:[

Y(1), Y(2)
]

= 0, (37)[
Y(1), Y(3)

]
= λY(1) + Y(2), (38)[

Y(2), Y(3)
]

= λY(2). (39)
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Spatially homogeneous wave metric class A2

From the Killing equations we obtain the following form of wave metric:

gij =


0 1 0 0
1 0 0 0

0 0
x02λ(α2 ln2 x0−2β lnx0+γ2)

σ2
x02λ(α2 lnx0−β)

σ2

0 0 x02λ(α2 lnx0−β)
σ2

α2x02λ

σ2

 (40)

where α, β, γ, λ are constant parameters of model, x0 is a null wave
variable.

g = det gij =− x0
4λ

σ2
, σ2 = α2γ2 − β2,

αγσ ̸= 0, 0 ≤ β2 < (αγ)2.

The spacetimes of the class A2 are of type IV according to Bianchi’s
classification and type N according to Petrov’s classification.
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Spatially homogeneous wave model class A3

The additional Killing vector for this class of spacetimes has the following
form:

Y i
(3) =

(
−x0, x1, λx2 − x3, x2 + λx3

)
, (41)

where x0 is a null wave variable, λ is a constant.
The commutation relations for the class A3 have the form:[

Y(1), Y(2)
]

= 0, (42)[
Y(1), Y(3)

]
= λY(1) + Y(2), (43)[

Y(2), Y(3)
]

= −Y(1) + λY(2). (44)
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Spatially homogeneous wave metric class A3

From the Killing equations we obtain the following form
of gravitational wave metric gij :

0 1 0 0
1 0 0 0

0 0
x02λ

(
γ−α cos(lnx02)−β sin(lnx02)

)
σ2

x02λ
(
α sin(lnx02)−β cos(lnx02)

)
σ2

0 0
x02λ

(
α sin(lnx02)−β cos(lnx02)

)
σ2

x02λ
(
γ+α cos(lnx02)+β sin(lnx02)

)
σ2


where α, β, γ, λ are constant parameters of the model, x0 is a null wave
variable.

g = det gij =− (x0)4λ

σ2
, σ2 = γ2 − α2 − β2, γ ̸= 0.

The spacetimes A3 class are of type VIIa according to Bianchi’s
classification and type N according to Petrov’s classification.
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Conclusion on Part III: Shapovalov gravitational wave exact solutions
for spatially homogeneous models of Bianchi universes

A classification of spatially homogeneous plane-wave models of
spacetime is constructed.
Three classes of wave spatially homogeneous exact models of
spacetime are obtained (A1, A2, A3).
The models considered can describe the primordial gravitational waves
of the Universe.
The models considered can be used to obtain exact wave solutions in
modified theories of gravity.
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Part IV. Light signal delay in a gravitational wave

The interval s of the spacetime of a gravitational wave can be reduced to
the following form in wave coordinates:

ds2 = 2dx0dx1 +
∑
p,q

gpq(x
0)
(
dxp + fp(x0)dx1

)(
dxq + f q(x0)dx1

)
, (45)

where x0 is the wave variable, p, q = 2, 3.
Einstein’s equations of the gravitational field in a vacuum give

Rαβ = Λgαβ → fp(x0) = 0. (46)

We obtain the metric of a ”strong” gravitational wave in a vacuum:

ds2 = 2 dx0dx1 +
∑
p,q

gpq(x
0) dxpdxq. (47)
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Trajectories of light rays (null geodesic lines). I.

The eikonal equation for the trajectories of propagation of light in a
gravitational field with metric gαβ has the form:∑

α,β

gαβ
∂Ψ

∂xα
∂Ψ

∂xβ
= 0, (48)

where Ψ is the eikonal function.
Separating the variables, we obtain

Ψ = ψ0(x
0) + kix

i, (49)

ψ0(x
0) = −kpkq

2k1
Gpq(x0), Gpq(x0) =

∫
gpq(x0) dx0, (50)

where the independent constant parameters ki are determined by the initial
values.
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Trajectories of light rays (null geodesic lines). II.

Based on the eikonal function, we obtain the trajectories of light rays and
massless particles in accordance with the Hamilton-Jacobi formalism in the
following form:

x1 = γ1 −
kpkq

2(k1)
2 G

pq
(
x0
)
, (51)

xp = γp +
kq
k1
Gpq

(
x0
)
, (52)

Gpq(x0) =

∫
gpq(x0) dx0.

where the constants γi are independent parameters of the light trajectories
determined by the initial or boundary conditions. The wave variable x0

plays the role of a parameter in the used privileged coordinate system along
the trajectories of massless particles and light rays.
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Boundary conditions of light signal propagation

Let us denote the world coordinates of the radiation source as xαS , and the
observer coordinates as xαD, then we obtain a system of equations for the
trajectory of a light beam connecting the world points xαS and xαD:

x1S = γ1 −
kpkq

2(k1)
2 G

pq
(
x0S
)
, (53)

xpS = γp +
kq
k1
Gpq

(
x0S
)
, (54)

x1D = γ1 −
kpkq

2(k1)
2 G

pq
(
x0D
)
, (55)

xpD = γp +
kq
k1
Gpq

(
x0D
)
, (56)

where γ1, γ2, γ3, k2/k1 and k3/k1 are five independent constant
parameters of the light signal trajectory.
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Parameters of light signal

From the equations of the trajectory of a light beam connecting world
points xαS and xαD we obtain an expression for the beam parameters kp/k1
through the parameters γp:

kp
k1

=
∑
q

[
G−1

S

]
pq
(xqS − γq) . (57)

Then, taking into account (57), we obtain the relation for γ1 through the
parameters γp:

γ1 = x1S+
kpkq

2(k1)
2 G

pq
(
x0S
)
= x1S+

1

2

∑
p,q

[
G−1

S

]
pq
(xpS − γp) (x

q
S − γq) (58)
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Light signal parameters γp

To determine the parameters γp we use the relation

xpD = γp +
kq
k1
Gpq

(
x0D
)
= γp +

∑
r,q

Gpq
D

[
G−1

S

]
qr
(xrS − γr) =

=
∑
r

γr

(
δrp −

∑
q

Gpq
D

[
G−1

S

]
qr

)
+
∑
r,q

Gpq
D

[
G−1

S

]
qr
xrS (59)

The obtained relation allows us to determine the parameters γp for the
light signal through the coordinates of the source and detector, using
matrix notation

γp =
∑
q

[(
I −GDG

−1
S

)−1
]
pq

(
xqD −

∑
r

[
GDG

−1
S

]
qr
xrS

)
, (60)

where G(x0) is the matrix of integrals of the metric components gpq and I
is the identity matrix.
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Light signal parameter γ1

Then for the parameter of the light beam γ1 we obtain the following
expression

γ1 = x1S +
1

2

∑
p,q

xpS
[
G−1

S

]
pq
xqS − 1

2

∑
p,q

(
xpS −

∑
r

[
GDG

−1
S

]
pr
xrS

)
×

×
∑
r

[
(GS −GD)

−1
]
rp
xrS

− 1

2

∑
p,q

xpS

[
(GS −GD)

−1
]
pq

(
xqD −

∑
r

[
GDG

−1
S

]
qr
xrS

)

− 1

2

∑
p,q

(
xpS +

∑
r

[
GDG

−1
S

]
pr
xrS

)[(
I −GDG

−1
S

)−1
]
pq
×

×
(∑

r

[
(GS −GD)

−1
]
pr
xrD −

∑
s,r

[
(GS −GD)

−1
]
ps

[
GDG

−1
S

]
sr
xrS

)
(61)
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Light signal parameters kp/k1

Then the parameters of the light beam kp/k1 can be written as:

kp
k1

=
∑
q

[
G−1

S

]
pq
xqS −

∑
q,s

[
G−1

S

]
pq

[(
I −GDG

−1
S

)−1
]
qs
×

×

(
xsD −

∑
r

[
GDG

−1
S

]
sr
xrS

)
=
∑
q

[(
GD −G−1

S

)−1
]
pq
xqD +

+
∑
q,r

xrS

(
δqr
[
G−1

S

]
pq

−
[(
GD −G−1

S

)−1
]
pq

[
GDG

−1
S

]
qr

)
=

=
∑
q

[(
GD −G−1

S

)−1
]
pq
xqD +

+
∑
q

([
G−1

S

]
pq

−
[(
GS −GSG

−1
D G−1

S

)−1
]
pq

)
xqS (62)
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Equation of the delay of a light signal in a gravitational wave

Finally, the ”delay” equation of the light signal, relating the coordinates of
the source xαS and the coordinates of the detector xαD in the wave
coordinate system (”light cone”) will take the form:

0 = 2
(
x1D − x1S

)
+

3∑
p,q=2

(xpD − xpS)
[
(GD −GS)

−1
]
pq
(xqD − xqS) , (63)

Gpq(x0) =

∫
gpq(x0) dx0.

In square brackets is the inverse matrix of the difference of matrices
GD = Gpq(x0D) and GS = Gpq(x0S) for the detector and source.

The relation we obtained (63) is for a gravitational wave with the metric
gpq(x0) an analogue of the interval along the trajectory of propagationof
light in flat Minkowski spacetime.
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Conclusion on Part IV: Light signal delay in a gravitational wave

I. Based on the Hamilton-Jacobi formalism for the spacetime of the exact
model of a gravitational wave in a privileged wave coordinate system, an
explicit form of light beams trajectories in a gravitational wave is found.

II. General relations are obtained that determine the form of the light
”cone” for the propagation of radiation in a gravitational wave.

III. A general form of relations is found that connect the coordinates of the
world points of the radiation source and the coordinates of the radiation
detector (i.e., the observer) in a gravitational wave along the trajectory of
light connecting these points (retarded time of radiation equation).
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Summary

I. Shapovalov spacetimes allow constructing exact models of gravitational
waves both in Einstein’s theory of gravity and in modified theories of
gravity.

II. Shapovalov spacetimes allow analytically constructing test particle
trajectories and light ray trajectories in gravitational waves.

III. Shapovalov spacetimes allow modeling gravitational waves in Bianchi
universes.

IV. A wide range of exact models of gravitational waves with calculation of
their observed physical effects (for example, the delay of a light signal in a
gravitational wave) is presented.
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