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Introduction

Gravity dominated evolution of the universe.

1 Quantum effects in curved spacetime induce higher-derivative terms (vacuum polarization).
Quantum gravity may produce higher-order higher-derivative terms with dimensional
couplings as well as non-local terms. The relevance of such terms at the very early universe.
Review: I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, Effective action in quantum
gravity, Bristol, UK: IOP (1992) 413 p Quantum effects modify Einstein gravity!

2 Early-time inflation maybe well described by the modified gravity theory. The well-known
example is R2 inflation and its evident generalizations. Advantages: no need for inflaton or
some fluid. Very good agreement with Planck data.

3 Modified gravity may well describe dark energy. Advantages: no need for dark scalar, for
dark fluid. The first well-known example of of F (R) gravity giving dark energy epoch:
S. Capozziello, Curvature quintessence, Int. J. Mod. Phys. D 11 (2002) 483

4 Unification of early-time inflation with late-time acceleration in modified gravity.The first
proposal of such unification in F (R) gravity: S. Nojiri and S. D. Odintsov, Modified gravity
with negative and positive powers of the curvature: Unification of the inflation and of the
cosmic acceleration, Phys. Rev. D 68 (2003) 123512,[hep-th/0307288]. No need for extra
scalars,vectors,spinors or fluids to explain the early-time and late-time acceleration within
same theory. The universe evolution changes the gravitational action. Gravitational action
changes the features of the universe history and induces the universe acceleration.
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Introduction

Gravity dominated evolution of the universe.

5 Further step: the complete description of the universe history from early-time inflation,via
radiation/matter dominance, to dark energy epoch within the same modified gravity. The
first example in F (R) gravity: S. Nojiri and S. D. Odintsov, Modified f(R) gravity consistent
with realistic cosmology: From matter dominated epoch to dark energy universe, Phys. Rev.
D 74 (2006) 086005,[hep-th/0608008]. The possibility to include quantum gravity effects at
the inflationary era.

6 Extra benefit: dark matter as modified gravity effect. The examples in F(R) gravity:
S. Capozziello, V. F. Cardone and A. -Troisi, Low surface brightness galaxies rotation curves
in the low energy limit of r**n gravity: no need for dark matter?, Mon. Not. Roy. Astron.
Soc. 375, 1423 (2007) The possibility to get inflation, dark energy and dark matter from the
same modified gravity: S. Nojiri and S. D. Odintsov, Dark energy, inflation and dark matter
from modified F(R) gravity, TSPU Bulletin N 8(110) (2011) 7 [arXiv:0807.0685 [hep-th]].

7 Different proposals for modified gravity.
a. Modified Gauss-Bonnet gravity or F (G) theory introduced in S. Nojiri and S. D. Odintsov,
Modified Gauss-Bonnet theory as gravitational alternative for dark energy, Phys. Lett. B 631
(2005) 1; [hep-th/0508049].
b. Non-local modified gravity:S. Deser and R. P. Woodard, Nonlocal Cosmology, Phys. Rev.
Lett. 99 (2007) 111301
c. String-inspired Gauss-Bonnet gravity admitting the unification of inflation with DE:
S. Nojiri, S. D. Odintsov and M. Sasaki, Gauss-Bonnet dark energy, Phys. Rev. D 71 (2005)
123509,[hep-th/0504052].
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Introduction

Gravity dominated evolution of the universe.

7 Different proposals for modified gravity.
d. Born-Infeld versions of modified gravity:review,. Beltran Jimenez, L. Heisenberg,
G. J. Olmo and D. Rubiera-Garcia, Born-Infeld inspired modifications of gravity,
arXiv:1704.03351 [gr-qc]
e. non-minimal coupling of modified gravity with matter like F (R,T ) gravity:T. Harko,
F. S. N. Lobo, S. Nojiri and S. D. Odintsov, f (R,T ) gravity, Phys. Rev. D 84 (2011) 024020
or direct coupling of curvature terms with whole matter Lagrangian: S. Nojiri and
S. D. Odintsov, Gravity assisted dark energy dominance and cosmic acceleration, Phys. Lett.
B 599 (2004) 137,astro-ph/0403622. etc (teleparallel gravity,vector gravity,massive
gravity,Horava-Lifshitz modified F (R) gravity,.....).

8 Consistent gravitational physics in Solar System (not-modified Newton law).

9 The possibility to realize the unification of GUTs with higher-derivative gravity and construct
the consistent quantum gravity with GUTs.

10 Rich number of applications: relativistic stars, wormholes without phantoms, modification of
black holes thermodynamics.

General review of modified gravities:
S. Nojiri and S. D. Odintsov, Unified cosmic history in modified gravity: from F(R) theory to Lorentz non-invariant models, Phys. Rept. 505 (2011) 59

doi:10.1016/j.physrep.2011.04.001 [arXiv:1011.0544 [gr-qc]]; S. Capozziello and M. De Laurentis, Extended Theories of Gravity, Phys. Rept. 509 (2011) 167

doi:10.1016/j.physrep.2011.09.003 [arXiv:1108.6266 [gr-qc]]; . Nojiri, S. D. Odintsov and V. K. Oikonomou, Modified Gravity Theories on a Nutshell:

Inflation, Bounce and Late-time Evolution, arXiv:1705.11098 [gr-qc],Phys.Repts.2018.
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Overview of modified gravity and FRW cosmology.

The action:

S =

∫
d4x
√
−g

[
F (R)

2κ2
+ L(matter)

]
, (1)

where g is the determinant of the metric tensor gµν , L(matter) is the matter Lagrangian and F (R) a generic
function of the Ricci scalar, R.
We shall write

F (R) = R + f (R) . (2)

Field eqs:

Rµν −
1

2
Rgµν = κ

2
(

TMG
µν + T̃ (matter)

µν

)
. (3)

Here, Rµν is the Ricci tensor and the part of modified gravity is formally included into the ‘modified gravity’

stress-energy tensor TMG
µν , given by

TMG
µν =

1

κ2F ′(R)

{
1

2
gµν [F (R)− RF ′(R)] + (∇µ∇ν − gµν�)F ′(R)

}
. (4)

T̃ (matter)
µν is given by the non-minimal coupling of the ordinary matter stress-energy tensor T (matter)

µν with
geometry, namely,

T̃ (matter)
µν =

1

F ′(R)
T (matter)
µν . (5)
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Overview of modified gravity and FRW cosmology.

The trace of Eq. (3) reads

3�F ′(R) + RF ′(R)− 2F (R) = κ
2T (matter)

, (6)

with T (matter) the trace of the matter stress-energy tensor. We can rewrite this equation as

�F ′(R) =
∂Veff

∂F ′(R)
, (7)

where
∂Veff

∂F ′(R)
=

1

3

[
2F (R)− RF ′(R) + κ

2T (matter)
]
, (8)

F ′(R) being the so-called ‘scalaron’ or the effective scalar degree of freedom. On the critical points of the theory,
the effective potential Veff has a maximum (or minimum), so that

�F ′(RCP) = 0 , (9)

and
2F (RCP)− RCPF ′(RCP) = −κ2T (matter)

. (10)

For example, in absence of matter, i.e. T (matter) = 0, one has the de Sitter critical point associated with a
constant scalar curvature RdS, such that

2F (RdS)− RdSF ′(RdS) = 0 . (11)
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Overview of modified gravity and FRW cosmology.

Performing the variation of Eq. (6) with respect to R, by evaluating �F ′(R) as

�F ′(R) = F ′′(R)�R + F ′′′∇µR∇νR , (12)

we find, to first order in δR,

�R +
F ′′′(R)

F ′′(R)
gµν∇µR∇νR −

1

3F ′′(R)

[
2F (R)− RF ′(R) + κ

2Tmatter
]

+�δR +

{[
F ′′′(R)

F ′′(R)
−
(

F ′′′(R)

F ′′(R)

)2
]

gµν∇µR∇νR +
R

3
−

F ′(R)

3F ′′(R)

+
F ′′′(R)

3(F ′′(R))2

[
2F (R)− RF ′(R) + κ

2Tmatter
]
−

κ2

3F ′′(R)

dTmatter

dR

}
δR

+2
F ′′′(R)

F ′′(R)
gµν∇µR∇νδR +O(δR2) ' 0 . (13)

This equation can be used to study perturbations around critical points. By assuming R = R0 ' const (local
approximation), and δR/R0 � 1, we get

�δR ' m2
δR +O(δR2) , (14)

where

m2 =
1

3

[
F ′(R0)

F ′′(R0)
− R0 +

κ2

F ′′(R0)

dTmatter

dR

∣∣∣
R0

]
. (15)

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 8 / 133



Overview of modified gravity and FRW cosmology.

Note that

m2 =
∂2Veff

∂F ′(R)2

∣∣∣
R0

. (16)

The second derivative of the effective potential represents the effective mass of the scalaron. Thus, if m2 > 0
one gets a stable solution. For the case of the de Sitter solution, m2 is positive provided

F ′(RdS)

RdSF ′′(RdS)
> 1 . (17)

Modified FRW dynamics.

ds2 = −dt2 + a2(t)dx2
, (18)

where a(t) is the scale factor of the universe. In the FRW background, from (µ, ν) = (0, 0) and the trace part
of the (µ, ν) = (i, j) (i, j = 1, ..., 3) components in Eq. (3), we obtain the equations of motion:

ρeff =
3

κ2
H2
, (19)

peff = −
1

κ2

(
2Ḣ + 3H2

)
, (20)

where ρeff and peff are the total effective energy density and pressure of matter and geometry, respectively,

ρeff =
1

F ′(R)

{
ρ +

1

2κ2

[
(F ′(R)R − F (R))− 6HḞ ′(R)

]}
, (21)

peff =
1

F ′(R)

{
p +

1

2κ2

[
−(F ′(R)R − F (R)) + 4HḞ ′(R) + 2F̈ ′(R)

]}
. (22)

The standard matter conservation law is
ρ̇ + 3H(ρ + p) = 0 . (23)

For a perfect fluid,
p = ωρ , (24)

ω being the thermodynamical EoS-parameter of matter.
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Overview of modified gravity and FRW cosmology.

The standard matter conservation law is
ρ̇ + 3H(ρ + p) = 0 . (25)

For a perfect fluid,
p = ωρ , (26)

ω being the thermodynamical EoS-parameter of matter. We also introduce the effective EoS by using the
corresponding parameter ωeff

ωeff =
peff

ρeff
, (27)

and get

ωeff = −1−
2Ḣ

3H2
. (28)

If the strong energy condition (SEC) is satisfied (ωeff > −1/3), the universe expands in a decelerated way, and

vice-versa. Viability: Minkowski solution, observable cosmology, positive grav. constant. Local tests:spherical

body solution,correct newtonian limit.
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F (R) gravity: Scalar-tensor description

One can rewrite F (R) gravity as the scalar-tensor theory. By introducing the auxiliary field A, the action (??) of
the F (R) gravity is rewritten in the following form:

S =
1

2κ2

∫
d4x
√
−g
{

F ′(A) (R − A) + F (A)
}
. (29)

By the variation of A, one obtains A = R. Substituting A = R into the action (29), one can reproduce the
action in (??). Furthermore, by rescaling the metric as gµν → eσgµν

(
σ = − ln F ′(A)

)
, we obtain the Einstein

frame action:

SE =
1

2κ2

∫
d4x
√
−g

(
R −

3

2
gρσ∂ρσ∂σσ − V (σ)

)
,

V (σ) =e
σg
(
e
−σ
)
− e

2σf
(

g
(
e
−σ
))

=
A

F ′(A)
−

F (A)

F ′(A)2
. (30)

Here g
(
e−σ

)
is given by solving the equation σ = − ln

(
1 + f ′(A)

)
= − ln F ′(A) as A = g

(
e−σ

)
. Due to

the conformal transformation, a coupling of the scalar field σ with usual matter arises. Since the mass of σ is
given by

m2
σ ≡

3

2

d2V (σ)

dσ2
=

3

2

{
A

F ′(A)
−

4F (A)

(F ′(A))2
+

1

F ′′(A)

}
, (31)

unless mσ is very large, the large correction to the Newton law appears.
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Exponential gravity.Unification of inflation with DE

A natural possibility is

F (R) = R − 2Λ

(
1− e

− R
R0

)
− Λi

(
1− e

−
(

R
Ri

)n)
+ γRα . (32)

For simplicity, we call

fi = −Λi

(
1− e

−
(

R
Ri

)n)
, (33)

where Ri and Λi assume the typical values of the curvature and expected cosmological constant during inflation,
namely Ri , Λi ' 1020−38eV2, while n is a natural number larger than one. The presence of this additional
parameter is motivated by the necessity to avoid the effects of inflation during the matter era, when R � Ri , so
that, for n > 1, one gets

R � |fi (R)| '
Rn

Rn−1
i

. (34)

The last term in Eq. (32), namely γRα, where γ is a positive dimensional constant and α a real number, is

necessary to obtain the exit from inflation. If γ ∼ 1/Rα−1
i and α > 1, the effects of this term vanish in the

small curvature regime.
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Exponential gravity.Unification of inflation with DE

By taking into account the viability conditions the simplest choice of parameters to introduce in the function of
Eq. (32) is:

n = 4 , α =
5

2
, (35)

while the curvature Ri is set as
Ri = 2Λi . (36)

In this way, n > α and we avoid undesirable instability effects in the small-curvature regime. ..also no anti-gravity
effects. From Eq. (??) one recovers the unstable de Sitter solution describing inflation as

RdS = 4Λi . (37)

We note that, due to the large value of n, RdS is sufficiently large with respect to Ri , and fi (RdS) ' −Λi . One
can also expect that, on top of this graceful exit from inflation, the effective scalar degree of freedom may also
give rise to reheating.
Efective energy density ρDE = ρeff − ρ/F ′(R) in the case of the of Eq. (32), near the late-time acceleration
era describing current universe.
The variable

yH ≡
ρDE

ρ
(0)
m

=
H2

m̃2
− a−3 − χa−4

. (38)

Here, ρ(0)
m is the energy density of matter at present time, m̃2 is the mass scale

m̃2 ≡
κ2ρ(0)

m

3
' 1.5× 10−67eV2

, (39)

and χ is defined as

χ ≡
ρ(0)

r

ρ
(0)
m

' 3.1× 10−4
, (40)

where ρ(0)
r is the energy density of radiation at present (the contribution from radiation is also taken into

consideration).
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Exponential gravity.Unification of inflation with DE

The EoS-parameter ωDE for dark energy is

ωDE = −1−
1

3

1

yH

dyH

d(ln a)
. (41)

By combining Eq. (19) with Eq. (??) and using Eq. (152), one gets

d2yH

d(ln a)2
+ J1

dyH

d(ln a)
+ J2yH + J3 = 0 , (42)

where

J1 = 4 +
1

yH + a−3 + χa−4

1− F ′(R)

6m̃2F ′′(R)
, (43)

J2 =
1

yH + a−3 + χa−4

2− F ′(R)

3m̃2F ′′(R)
, (44)

J3 = −3a−3 −
(1− F ′(R))(a−3 + 2χa−4) + (R − F (R))/(3m̃2)

yH + a−3 + χa−4

1

6m̃2F ′′(R)
, (45)

and thus, we have

R = 3m̃2
(

dyH

d ln a
+ 4yH + a−3

)
. (46)

The parameters of Eq. (32) are chosen as follows:

Λ = (7.93)m̃2
,

Λi = 10100Λ ,

Ri = 2Λi , n = 4 ,

α =
5

2
, γ =

1

(4Λi )α−1
,

R0 = 0.6Λ , 0.8Λ , Λ . (47)
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Exponential gravity.Unification of inflation with DE

Eq. (155) can be solved in a numerical way, in the range of R0 � R � Ri (matter era/current acceleration).
yH is then found as a function of the red shift z,

z =
1

a
− 1 . (48)

In solving Eq. (155) numerically, we have taken the following initial conditions at z = zi

dyH

d(z)

∣∣∣
zi

= 0 ,

yH

∣∣∣
zi

=
Λ

3m̃2
, (49)

which correspond to the ones of the ΛCDM model. This choice obeys to the fact that in the high red shift
regime the exponential model is very close to the ΛCDM Model. The values of zi have been chosen so that
RF ′′(z = zi ) ∼ 10−5, assuming R = 3m̃2(z + 1)3. We have zi = 1.5, 2.2, 2.5 for R0 = 0.6Λ, 0.8Λ, Λ,
respectively. In setting the parameters, we have used the last results of the W MAP, BAO and SN surveys.

Using Eq. (41), one derives ωDE from yH . In the present universe (z = 0), one has ωDE = −0.994, −0.975,

−0.950 for R0 = 0.6Λ, 0.8Λ, Λ. The smaller R0 is, our model becomes more indistinguishable from the ΛCDM

model, where ωDE = −1.
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A viable exponential F (R) model

S. D. Odintsov, D. Sáez-Gómez and G. S. Sharov, Eur. Phys. J. C. 77 (2017) 862, arXiv:1709.06800
with the action

S =
1

2κ2

∫
d4x
√
−g F (R) + Sm,

where

F (R) = R − 2Λ

[
1− exp

(
− β

R

2Λ

)]
− Λi

[
1− exp

(
−
( R

Ri

)n
)]

+ γRα. (50)

reproduces early time inflation and late-time acceleration in concordance with observational con-
straints.
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A viable exponential F (R) model: Inflation

The (last) inflationary terms support the slow-roll inflation scenario at early times:

R > Ri , Ri/Λ = 1086 − 10104. (51)

Under the conditions

2 < α < 3 , n > α , Ri = 2Λi , γ ' Λ1−α
i . (52)

at early times (51) an unstable (inflationary) de Sitter point R = RdS arises under the
equality G(RdS ) = 0

(
here G = 2F (R)− RFR

)
or

RdS − (α− 2)γRαdS − 2Λi = 0 ;

a successful exit from inflation appears;

we avoid the effects of inflation during the matter era when R � Ri (the inflationary terms
become negligible);

we avoid anti-gravity effects and instabilities during the matter era.
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A viable exponential F (R) model: Inflation

We express the action via an additional scalar mode φ

S =
1

2κ2

∫
d4x
√
−g [φR − V (φ)] + Sm , where φ = FR , V (φ) = RFR − F ,

conformally transform it into the Einstein frame g̃µν = φ · gµν and redefine

φ = e

√
2
3
κφ̃
, V = 2κ2φ2 · Ṽ .

The calculated slow-roll parameters ε, η, the spectral index of the perturbations ns and the tensor-
to-scalar ratio r ,

ε =
1

2κ2

(
Ṽ ′(φ̃)

Ṽ (φ̃)

)2

, η =
1

κ2

Ṽ ′′(φ̃)

Ṽ (φ̃)
, ns − 1 = −6ε+ 2η , r = 16ε

under the conditions (52) obey the Planck and Bicep2 constraints

ns = 0.968± 0.006 , r < 0.07 .

The corresponding number of e-folds N ' 58 lies in the range 55 ≤ N ≤ 65.
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A viable exponential F (R) model: Late-time acceleration and observations

At the late-time epoch (R � Ri and z < 104) the inflationary terms are negligible and the
Lagrangian (50) becomes

F (R) = R − 2Λ

[
1− exp

(
− β

R

2Λ

)]
. (53)

The dynamical equations

FR Rµν −
F

2
gµν +

(
gµνgαβ∇α∇β −∇µ∇ν

)
FR = κ2Tµν

in the flat FLRW space-time with the metric ds2 = −dt2 + a2(t) dx2 are reduced to the system
for the Ricci scalar R and the Hubble parameter H = ȧ/a:

dH

dN
=

R

6H
− 2H, (N = log a) (54)

dR

dN
=

1

FRR

(
κ2ρ

3H2
− FR +

RFR − F

6H2

)
, (55)

ρ = ρ0
ma−3 + ρ0

r a−4 = ρ0
m

(
a−3 + X∗a−4

)
.

During the early universe (for z ≥ 104 in practice) when curvature R is large, the model (53)
transforms into the ΛCDM model with F (R) = R− 2Λ and its viable solutions tend asymptotically
to ΛCDM solutions with parameters

H∗0 ≡ HΛCDM
0 , Ω∗m ≡ ΩΛCDM

m , Ω∗Λ ≡ ΩΛCDM
Λ . (56)

Starting from the ΛCDM asymptotical behaviour at a < 10−4 we integrate the system (54), (55)
and compare its solutions at the matter-dominated epoch z ≤ 103 (for 4 free parameters of the
model β, Ω∗m, Ω∗Λ, H∗0 ) with the available observational constraints.
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A viable exponential F (R) model: Late-time acceleration and observations
The observational constraints include:

The Union 2.1 Supernovae Ia data with NSN = 580 data points (the observed SNe Ia
distance moduli µobs

i for redshifts zi at 0 ≤ zi ≤ 1.41). We compare µobs
i with µth(zi ) and

calculate the χ2 function:

µth(z) = 5 log10
DL(z)
10pc , DL(z) = (1 + z)DM (z), DM (z) = c

∫ z
0

dz̃
H(z̃)

χ2
SN (β,Ω∗m,Ω

∗
Λ) = min

H∗0

∑NSN
i,j=1 ∆µi

(
C−1

SN

)
ij

∆µj , ∆µi = µth(zi )− µobs
i .

Baryon acoustic oscillations (BAO) data include 17 data points for dz (z) = rs (zd )
/

DV (z)

and 7 data points for A(z) = H0

√
Ω0

mDV (z)
/

(cz), where rs (zd ) is the sound horizon scale
at the end of the baryon drag epoch,

DV (z) =
[
czD2

M (z)
/

H(z)
]1/3

.

We use NH = 30 values H(zi ) estimated from differential ages of galaxies and

χ2
H = min

H0

NH∑
i=1

[
Hobs (zi )−Hth(zi ,pj )

σH,i

]2

.

The CMB parameters x =
(
R, `A, ωb

)
=

(√
Ω0

m
H0DM (z∗)

c
,
πDM (z∗)

rs (z∗)
, Ω0

bh2

)
are compared

with the estimations from Ref. Q.-G. Huang, K. Wang, S. Wang, JCAP, 1512 (2015) 022:

RPl = 1.7448± 0.0054, `Pl
A = 301.46± 0.094, ωPl

b = 0.0224± 0.00017.
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A viable exponential F (R) model: Late-time acceleration and observations

For the F (R) model (53) we calculated the optimal values, 1σ errors for the model parameters and
minχ2, which are compared in Table 1 with the predictions of the ΛCDM model.

Model data Ω∗m Ω∗Λ β minχ2/d .o.f

F (R) SNe+BAO+H(z) 0.282+0.010
−0.009 0.696+0.025

−0.037 3.36+∞
−2.16 572.07 / 631

F (R) SNe+BAO+H(z)+CMB 0.280+0.001
−0.001 0.637+0.047

−0.062 2.38+∞
−0.80 575.51 / 634

ΛCDM SNe+BAO+H(z) 0.282+0.010
−0.009 0.718+0.009

−0.010 ∞ 572.93 / 633

ΛCDM SNe+BAO+H(z)+CMB 0.2772+0.0003
−0.0004 0.7228+0.0004

−0.0003 ∞ 583.24 / 636

Table: Predictions of the exponential F (R) model (53) and the ΛCDM for different data sets.

One may conclude that the considered exponential F (R) model with the full Lagrangian (50) is
capable to provides the right predictions for the inflationary epoch and for late-time acceleration
in such a way that no other fields are required. The model satisfies the observational constraints,
demonstrates better results in minχ2 than the ΛCDM model, but it has the extra parameter
β. Thus, the statistical difference between the F (R) model (53) and the ΛCDM model is not
significant.
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Compatibility of Einstein Gauss-Bonnet Theory of Gravity with GW170817

S.D. Odintsov and V.K. Oikonomou, Phys.Lett.B 797 (2019) 134874
Let us first consider the simplest Einstein Gauss-Bonnet theory of gravity

S =
∫

d4x
√
–g
(
1
2
f (R,ϕ,X ) –

1
2
ξ(ϕ)c1G

)
, (1)

where X = 1
2∂µϕ∂

muϕ, and G = RabcdRabcd – 4RabRab + R2 is the Gauss-Bonnet invariant. Also the function f (R, X ,ϕ)
appearing in the action (1) is chosen to be,

f (R,ϕ, X ) =
R
κ2

– 2X – 2V (ϕ) , (2)

where κ2 = 1
M2

p
, and Mp is the four dimensional Planck mass,.

For the FRW background metric, the equations of motion of the theory are the following,

3H2

κ2
= –2X +

FR – f
2

– 3HḞ + 12c1H
3ξ̇ , (3)

–2Ḣ – 3H2

κ2
= –

RF – f
2

–
1
3

(
12c1H

2ξ̈ + 2H(Ḣ + H2)ξ̇
)
, (4)
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ϕ̈ + 3Hϕ̇ + f,ϕ + 12c1(Ḣ + H2)H2 ξ̇

ϕ̇
= 0 . (5)

For the function f (R, X ,ϕ) chosen as in Eq. (2), the gravitational equations of motion read,

3H2

κ2
=
ϕ̇2

2
+ V (ϕ) + 12c1H

3ξ̇ , (6)

–2Ḣ
κ2

= ϕ̇2 + 12c1H
3ξ̇ – 4c1

(
12c1H

2ξ̈ + 2H(Ḣ + H2)ξ̇
)
, (7)

ϕ̈ + 3Hϕ̇ + V,ϕ + 12c1(Ḣ + H2)H2 ξ̇

ϕ̇
= 0 . (8)

We also introduce at this point, the Qi functions,

Qa = –4c1ξ̇H
2 , (9)

Qb = –8c1ξ̇H ,

Qe = –16c1ξ̇Ḣ ,

Qf = 8c1
(
ξ̈ – ξ̇H

)
.
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For the above theory, the general expression for the scalar perturbation propagation wave speed is equal to,

c2A = 1 +

Ḟ+Qa
2F+Qb

Qe +
(

Ḟ+Qa
2F+Qb

)2
Qf

ϕ̇2 + 3 (Ḟ+Qa)2
2F+Qb

, (10)

where F = ∂f
∂R . In addition, the gravitational wave propagation speed is equal to,

c2T = 1 –
Qf

2F + Qb
. (11)

At this point, the source of the non-viability of the model (1) is apparent, and it is due to the fact that the
gravitational wave speed (11) is not equal to unity. Therefore, if the function Qf is zero, then the gravitational wave
speed is equal to one. Therefore, we impose the condition Qf = 0, which imposes the following condition on the
Gauss-Bonnet scalar function ξ(ϕ),

Qf ∼
(
ξ̈ – ξ̇H

)
= 0 . (12)

Thus if the coupling ξ(ϕ) satisfies the differential equation,

ξ̈ – ξ̇H = 0 , (13)

the gravitational wave speed becomes equal to one, that is c2T = 1. The differential equation (13) can be solved
analytically with respect to ξ̇, and the solution is,

ξ̇ = exp
(∫ tf

ti
H(t)dt

)
= eN , (14)
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where we used the definition of the e-foldings number,

N =
∫ tf

ti
H(t)dt , (15)

and we assumed that the integration constants are ∼ O(1) in reduced Planck units, for simplicity. It proves that the
explicit form of ξ̇ is the only quantity needed for the calculation of the slow-roll indices and of the observational
indices of inflation, so the explicit form of ξ(ϕ) is redundant for our purposes. Also, by combining equations (13) and
(14), we obtain,

ξ̈ = Hξ̇ = HeN , (16)

which is also very relevant for the calculations to follow.
In conclusion, current result is Eq. (14) in conjunction with (16), which when are satisfied, the gravitational wave
speed of the Einstein Gauss-Bonnet theory at hand is c2T = 1 in reduced Planck units. Let we shall study in detail the
phenomenological implications of the above conditions in the Einstein Gauss-Bonnet theory at hand, when the
slow-roll condition Ḣ ≪ H2 is assumed to hold true.
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Let us now investigate the inflationary phenomenology of the Einstein Gauss-Bonnet gravity model, with the scalar
coupling to the Gauss-Bonnet invariant satisfying Eqs. (14) and (16). Obviously, if the Einstein Gauss-Bonnet satisfies
Eqs. (14) and (16), it has a gravitational wave speed c2T = 1, thus it is compatible with the GW170817.
we shall assume hereafter that the slow-roll approximation holds true, which is quantified by the following relations,

Ḣ ≪ H2, ϕ̈ ≪ Hϕ̇ , V (ϕ) ≫ ϕ̇2

2
. (17)

Let us see how the gravitational equations of motion become by taking into account the slow-roll conditions (17), so
the last two become,

–2Ḣ
κ2

∼ ϕ̇2 + 12c1H
3ξ̇ – 4c1

(
12c1H

2ξ̈ + 2H3)ξ̇
)
, (18)

3Hϕ̇ + V,ϕ + 12c1H
4 ξ̇

ϕ̇
∼ 0 . (19)

By using Eq. (16), and substituting ξ̈ = Hξ̇ in Eq. (18), the latter becomes greatly simplified, and it reads,

Ḣ ≃ –
1
2
ϕ̇2κ2 , (20)

since the last two terms in Eq. (18) cancel.
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Then by using the relation,

N =
∫ ϕf

ϕk

H

ϕ̇
dϕ , (21)

we can express all the above quantities as a function of the e-foldings number, and eventually we can confront the
theory with the observational data. Note that ϕk in Eq. (21) is the initial value of the scalar field which is assumed to
be taken at exactly the horizon crossing, and ϕf is the value of the scalar field when inflation ends.
The slow-roll indices for the theory at hand are

ϵ1 =
Ḣ
H2 , ϵ2 =

ϕ̈

Hϕ̇
, (22)

ϵ4 =
Ė

2HE
,

where E stands for,

E =
1

ϕ̇2

(
ϕ̇2 + 3

Q2
a

2
κ2 + Qb

)
, (23)

and Qt = 2
κ2 + 1

2Qb .
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From the slow-roll condition (17) it easily obtained that ϵ2 ≃ 0, so we disregard this index hereafter. Let us find the
explicit form of the slow-roll indices ϵ1, ϵ4, and we shall investigate the implications of the conditions ϵ1 ≪ 1, ϵ4 ≪ 1.
For the slow-roll index ϵ1, substituting Ḣ from Eq. (20), we have,

ϵ1 = –
1

2H2 ϕ̇
2κ2 , (24)

from which it is obtained that,
κ2ϕ̇2 ≪ H2 . (25)

Also, the function E (23), appearing in the slow-roll index ϵ4 in Eq. (22), has the following form for the theory at hand,

E =
48c21H(t)

4ξ̇2

κ2ϕ̇
(

2
κ2 – 8c1H(t)ξ̇

) +
ϕ̇

κ2
, (26)
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and the slow-roll index ϵ4 reads,

ϵ4 =
96c21H(t)

2Ḣξ̇2(
2
κ2 – 8c1H(t)ξ̇

)(
48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
) +

192c31H(t)
3Ḣξ̇3(

2
κ2 – 8c1H(t)ξ̇

)2( 48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
) (27)

48c21H(t)
3ξ̇ξ̈(

2
κ2 – 8c1H(t)ξ̇

)(
48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
) +

192c31H(t)
4ξ̇2ξ̈(

2
κ2 – 8c1H(t)ξ̇

)2( 48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
)

+
ϕ̇ϕ̈

2H(t)
(

48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
) –

24c21H(t)
3ξ̇2ϕ̈

ϕ̇
(

2
κ2 – 8c1H(t)ξ̇

)(
48c21H(t)4ξ̇2
2
κ2 –8c1H(t)ξ̇

+ ϕ̇2
) .
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From the above slow-roll index we can easily understand when the slow-roll dynamics holds true. Indeed, by
assuming,

6c1H(t)
3ξ̇ ≫ ϕ̇2 ,

2
κ2

≪ 8c1H(t)ξ̇ , (28)

the slow-roll index ϵ4 becomes approximately ϵ4 ∼ – Ḣ
2H2 , which holds true in view of Eq. (17). Thus the

approximations (28) are valid and we shall assume that these complement the slow-roll conditions (17). In view of the
condition 2

κ2 ≪ 8c1H(t)ξ̇, it holds true that H2

κ2 ∼ V (ϕ) ≫ c1H3ξ̇, so in view of the above and of the slow-roll
condition (17), the equation of motion (6) becomes,

3H2

κ2
≃ V (ϕ) , (29)

and also Eq. (19) becomes,

ϕ̇ ≃ –12c1H
4 ξ̇

V,ϕ
. (30)

We have Ḣ, ϕ̇ and the Hubble rate H expressed as functions of the scalar field ϕ, which can be eventually reexpressed
as functions of the e-foldings number, and ξ̇, ξ̈ as functions of the e-foldings number.
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Assume that the scalar potential has the form,
V (ϕ) = V0ϕ

n , (31)

where V0 an arbitrary parameter of dimension sec–4+n. In the following we shall use Eqs. (20), (29) and (30), in
conjunction with Eqs. (14) and (16). Hence combining the above, the slow-roll index ϵ1 reads,

ϵ1 ≃
8c21κ

8V0e2Nϕn+2

3n2
, (32)

while the slow-roll index ϵ4 reads,

ϵ4 ≃
9
(
–16

√
3c31κ

12e3NV 2
0ϕ

2n+2 + 16c21κ
6e2Nϕ2 (κ2V0ϕn)3/2 + 2

√
3c1κ4n2V0ϕn – 3n2

√
κ2V0ϕn

)
√

κ2V0ϕn
(
4
√
3c1κ2eN

√
κ2V0ϕn – 3

)(
2κ2ϕ2

(
4
√
3c1κ2eN

√
κ2V0ϕn – 3

)
– 9n2

) . (33)
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The final value of the scalar field at the end of inflation, so by equating |ϵ1| = 1, we obtain,

ϕf =
(
3
8

) 1
n+2
(
n2e–2N

c21κ
8V0

) 1
n+2

, (34)

so by using this and performing the integration in Eq. (21), upon inverting N(ϕk ), we obtain the function ϕk = ϕk (N),
which is,

ϕk = 2–2/n31/n

c1κ
3√V0e

Y


√
3e–N

(( 3
8

) 1
n+2
(

n2e–2N

c21κ8V0

) 1
n+2
)– n

2

2c1κ3
√
V0

– N




–2/n

. (35)

Now
ns ≃ 1 + 2(2ϵ1 – ϵ4) , (36)

which holds true when the slow-roll indices take small values.
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In addition,

r = 16
∣∣∣ (ϵ1 – κ2

4
(–

1
H
Qe + Qf )

)
1

1 + Qbκ2

2

c3A
∣∣∣ , (37)

where we took into account that the gravitational wave speed is equal to c2T = 1 for the model at hand.
Let us now confront the theory with the observational data and specifically with the latest Planck 2018 data which
constrain the spectral index ns and the tensor-to-scalar ratio r as follows,

ns = 0.9649± 0.0042, r < 0.064 . (38)

we quote the values of the free parameters for which compatibility with the observational data can be achieved. We
shall work for convenience in reduced Planck units, and the result of our analysis is that when c1 takes small values
of the order c1 ∼ O(10–30) in reduced Planck units, and also when V0 ∼ O(10) and with n < 0, compatibility with the
observational data can be achieved. For example when c1 = 10–29.216, V0 = 10 in reduced Planck units and
n = –0.0894, the spectral index ns and the tensor-to-scalar ratio take the following values,

ns = 0.96932, r = 0.0401939 , (39)

which are both compatible with the observational data. Thus we demonstrated that the Einstein Gauss-Bonnet
theory with c2T = 1, and for a power-law potential can be compatible with the observational data when the slow-roll
assumption is assumed.
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Novel Stellar Astrophysics from Extended Gravity

Neutron stars are proven literally to be the superstars of all stellar structures, not unjustifiably. Since the striking
observation of Jocelyn Bell back in 1967, they have been in the epicenter of many scientific disciplines, apart from
astrophysics. The last decade two striking gravitational waves observations of the LIGO-Virgo collaboration have set
the stage for a new way of thinking both in theoretical cosmology and in theoretical astrophysics.
the field equations are

df (R)
dR

Rµν –
1
2
f (R)gµν –

[
∇µ∇ν – gµν□

] df (R)
dR

=
8πG
c4

Tµν , (1)

with Tµν =
–2√
–g
δ
(√

–gLm
)

δgµν
being the energy momentum tensor of the perfect fluid matter. A spherically

symmetric, static neutron star is described by the metric

ds2 = e2ψc2dt2 – e2λdr2 – r2(dθ2 + sin2 θdϕ2) . (2)

Inside the neutron star, the perfect matter fluid energy momentum tensor is Tµν = diag(e2ψρc2, e2λp, r2p, r2p sin2 θ)
where ρ and p are the matter energy density and the pressure.
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The Tolman-Oppenheimer-Volkoff (TOV) equations for f (R) gravity are,

dp
dr

= –(ρ + p)
dψ
dr

. (3)

dλ
dr

=
e2λ[r2(16πρ + f (R)) – f ′(R)(r2R + 2)] + 2R2r f

′′′(R)r2 + 2rf ′′(R)[rRr ,r + 2Rr ] + 2f ′(R)
2r [2f ′(R) + rRr f ′′(R)]

, (4)

dψ
dr

=
e2λ[r2(16πp – f (R)) + f ′(R)(r2R + 2)] – 2(2rf ′′(R)Rr + f ′(R))

2r [2f ′(R) + rRr f ′′(R)]
, (5)

d2R
dr2

= Rr

(
λr +

1
r

)
+

f ′(R)
f ′′(R)

[
1
r

(
3ψr – λr +

2
r

)
– e2λ

(
R
2
+

2
r2

)]
–
R2r f

′′′(R)
f ′′(R)

. (6)

One of the most important f (R) gravity model is

f (R) = R + αR2, (7)

where α denotes the coupling parameter constrained by inflationary dynamics.
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Coming to the predictions of extended gravity, the fundamental question is: How large can a neutron star mass be?
This question is of fundamental importance, and the only consistent way to see what is the maximum neutron star in
the context of any theory is to examine the problem by choosing the stiffest possible EoS for nuclear matter. The
stiffest EoS, which simultaneously respects the high density stability condition for nuclear matter ( dPdρ > 0) and the

subluminality condition for the speed of sound ( dPdρ ≤ c2), is the causal EoS with the following form,

Psn(ρ) = Pu(ρu) + (ρ – ρu)c
2 , (8)

with ρu being the maximum density for nuclear matter, and Pu(ρu) the corresponding pressure. By assuming this EoS,
one obtains the maximum upper mass for neutron stars, which, in the context of GR for slowly rotating neutron
stars, is

MCL
max = 3M⊙

√
5× 1014g/cm3

ρu
, (9)

thus in the context of GR, the maximum mass limit of slowly rotating neutron stars is,

Mmax ≤ 3M⊙ . (10)
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With regard to any modified gravity, the question is whether the 3 solar masses upper limit of GR is respected.
Consider that the nuclear matter has the following causal EoS,

Psn(ρ) = Pu(ρu) + (ρ – ρu)v
2
s , (11)

where vs is the sound speed, we shall assume that it varies in the range c2/3 ≤ v2s ≤ c2 . Also the transition density
will be assumed to be that of the SLy EoS at ρu = 2ρ0, where ρ0 is the nuclear matter saturation density.
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The results of the numerical integration of the TOV equations for the R2 model are presented in Table 1

EoS α, Mmax , Rs , ∆Mmax ,
r2g M⊙ km M⊙
ρu = 2ρ0

0 1.92 11.28 0
0.25 1.97 11.45 0.05

SLy+(5) 2.50 2.04 11.54 0.12
with v2s = c2/3 10 2.11 11.69 0.19

0 2.97 12.85 0
0.25 2.93 13.28 -0.04

SLy+(5) 2.50 2.98 13.57 0.01
with v2s = c2 10 3.10 13.71 0.13

Table: Causal maximum mass of neutron star for the R2 model. The parameter α is r2g = 4G2M2
⊙/c

4 units
with rg being the gravitational radius of the Sun.
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The results of the numerical analysis are particularly interesting. Firstly, in all studied case, the 3 solar masses limit of
GR is well respected. Let us discuss in brief the outcomes of our analysis, starting from the effect of the parameter α.
As it can be seen in Table 1, for values of the sound speed less than the speed of light, the causal maximum mass for
the R2 model is larger than that of GR, while when the sound speed is equal to the light speed, when small values of
α are used, the GR causal maximum mass limit is larger compared to the R2 model. On the contrary, for large values
of α, the R2 model dominates over GR. We have to note here that the parameter α for the R2 model in cosmological
contexts, must take small values.
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Reconstruction of slow-roll F(R) from inflationary indices. S. Odintsov and V.Oikonomou, Annals
Phys. 388 (2018) 267-275
By using a bottom-up approach, we shall investigate how a viable set of the observational indices
ns and r can be realized by an F (R) gravity in the context of the slow-roll approximation, where ns

is the power spectrum of the primordial curvature perturbations and r is the scalar-to-tensor ratio.
It is important to note that the slow-roll approximation shall be considered to hold true during our
calculations. In this case, the dynamics of inflation is quantified perfectly by the generalized slow-
roll indices ε1 ,ε2, ε3, ε4. The first slow-roll parameter ε1 controls the duration of the inflationary

era and more importantly if it occurs in the first place, and it is equal to ε1 = − Ḣ
H2 . In the case of

vacuum F (R) gravity in the context of the slow-roll approximation, the slow-roll parameters can
be approximated as follows,

ε2 = 0 , ε1 ' −ε3 , ε4 '
FRRR

FR

(
24Ḣ + 6

Ḧ

H

)
− 3ε1 +

ε̇1

Hε1
, (57)

where FR = dF
dR

, and FRRR = d3F
dR3 . In addition, the spectral index of the primordial curvature

perturbations of the vacuum F (R) gravity, and the corresponding scalar-to-tensor ratio, are equal
to,

ns ' 1− 6ε1 − 2ε4, r = 48ε2
1 . (58)
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At this point, let us exemplify our bottom-up reconstruction method by using a characteristic
example, and to this end, let us assume that the scalar-to-tensor ratio r is equal to,

r =
c2

(q + N)2
, (59)

where N is the e-foldings number and c, q are arbitrary parameters for the moment. As we now
demonstrate, the choice (59) can lead to a viable inflationary cosmology. By using the expression
in Eq. (58) for the scalar-to-tensor ratio r , we obtain that,

r =
48Ḣ(t)2

H(t)4
(60)

and by expressing the above expression in terms of the e-foldings number N, by using the following,

d

dt
= H

d

dN
, (61)

the scalar-to-tensor ratio in terms of H(N) is,

r =
48H′(N)2

H(N)2
, (62)

where the prime now indicates differentiation with respect to N. By combing Eqs. (59) and (62),
we obtain the differential equation,

√
48H′(N)

H(N)
=

c

(q + N)
, (63)

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 23 / 133



Reconstruction of slow-roll F(R) from inflationary indices.

which can be solved and the solution is,

H(N) = γ(N + q)
c

4
√

3 . (64)

The spectral index ns can be calculated in terms of N, however it is worth providing the expression
in terms of the cosmic time, which is,

ns ' 1 +
4Ḣ(t)

H(t)2
−

2Ḧ(t)

H(t)Ḣ(t)
+

FRRR

FR

(
24Ḣ + 6

Ḧ

H

)
, (65)

so by using (64) and also the following expression,

d2

dt2
= H2 d2

dN2
+ H

dH

dN

d

dN
, (66)
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the spectral index in terms of the e-foldings number is equal to,

ns ' 1+
4H′(N)

H(N)
−

2
(
H(N)H′′(N) + H′(N)2

)
H(N)H′(N)

+
FRRR

FR

(
24H(N)H′(N)+6H(N)H′′(N)+6H′(N)2

)
,

(67)
where the prime indicates differentiation with respect to the e-foldings number. Finally, by substi-
tuting Eq. (64), the spectral index becomes equal to,

ns = 1 +
c

√
3(N + q)

−
cN

√
3(N + q)2

−
cq

√
3(N + q)2

+
2N

(N + q)2
+

2q

(N + q)2
+ (68)

c2γ2FRRR (N + q)
c

2
√

3
−2

8FR
+

5
√

3cγ2FRRR (N + q)
c

2
√

3
−1

2FR
.

We need first to investigate which F (R) gravity can produce the inflationary era quantified by Eqs.
(64) and (68), in order to find the analytic form of the last two terms in Eq. (68). As we shall
see, if the parameter c is appropriately chosen, an analytic expression for F (R) can be obtained.
In order to find the F (R) gravity which realizes the observational indices (64) and (68), so the
cosmological equation appearing in Eq. (93), can be rewritten in the form,

− 18
(

4H(t)2Ḣ(t) + H(t)Ḧ(t)
)

FRR (R) + 3
(

H2(t) + Ḣ(t)
)

FR (R)−
F (R)

2
= 0 , (69)

where F ′(R) = dF (R)
dR

. The e-folding number N, which in terms of the scale factor a is,

e−N =
a0

a
, (70)
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and in the following we set a0 = 1. By writing the FRW equation of Eq. (259) in terms of the
e-foldings number N, we obtain,

− 18
(
4H3(N)H′(N) + H2(N)(H′)2 + H3(N)H′′(N)

)
FRR (R) (71)

+ 3
(
H2(N) + H(N)H′(N)

)
FR (R)−

F (R)

2
= 0 ,

where the primes stand for H′ = dH/dN and H′′ = d2H/dN2. By using the function G(N) =
H2(N), the differential equation (71) can be cast as follows,

− 9G(N(R))
(
4G ′(N(R)) + G ′′(N(R))

)
FRR (R) +

(
3G(N) +

3

2
G ′(N(R))

)
FR (R)−

F (R)

2
= 0 ,

(72)

where G ′(N) = dG(N)/dN and G ′′(N) = d2G(N)/dN2. Also the Ricci scalar can be expressed in
terms of the function G(N) as follows,

R = 3G ′(N) + 12G(N) . (73)

Thus, by solving the differential equation (72), we can find the F (R) gravity which may realize a
cosmological evolution. Now we shall make use of the reconstruction technique we just presented
in order to find the F (R) gravity which realizes the observational indices (64) and (68). In our
case, the function G(N) is,

G(N) = γ2(N + q)
c

2
√

3 , (74)

and consequently, the algebraic equation (73) takes the following form,

12γ2(N + q)
c

2
√

3 +
1

2

√
3cγ2(N + q)

c
2
√

3
−1

= R . (75)
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In general it is quite difficult to obtain a general solution to this equation, however is c is chosen
appropriately, it is possible to obtain even full analytic results. For example if c =

√
12, the results

have a fully analytic form. In the following we shall investigate only the case with c =
√

12, in
which case the algebraic equation (75) becomes,

3γ2 + 12γ2N + 12γ2q = R , (76)

so the function N(R) is equal to,

N(R) =
−3γ2 − 12γ2q + R

12γ2
. (77)

By combining Eqs. (74) and (77) the differential equation (72) in this case becomes,

− 36γ4

(
−3γ2 − 12γ2q + R

12γ2
+ q

)
F ′′(R) +

1

4

(
3γ2 + R

)
F ′(R)−

F (R)

2
= 0 , (78)

which can be solved analytically, and the solution is,

F (R) =
3

2

√
3γ3δ +

δR2

2
√

3γ
− 3
√

3γδR + µ
(
R − 3γ2

)3/2
L

3
2
1
2

(
1

12

(
R

γ2
− 3

))
, (79)

where the function Lαn (x) is the generalized Laguerre Polynomial and also δ and µ are arbitrary
integration constants. The existence of the Laguerre polynomial term, imposes the constraint
R < 3γ2, however in this case the term containing the root becomes complex. Hence in order to
avoid inconsistencies, we set µ = 0, and hence the resulting F (R) gravity is,

F (R) =
3

2

√
3γ3δ +

δR2

2
√

3γ
− 3
√

3γδR , (80)
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which is a variant form of the Starobinsky model. By requiring the coefficient of R to be equal to
one, δ must be equal to δ = − 1

3
√

3γ
, hence the resulting F (R) gravity during the slow-roll era is,

F (R) = R −
γ2

2
−

R2

18γ2
. (81)

We can find the Hubble rate as a function of the cosmic time, by solving the differential equation,

Ṅ = H(N(t)) , (82)

where H(N) is given in Eq. (64), and the resulting evolution is,

N(t) =
1

4

(
Λ2 − 4q + γ2t2 − 2γΛt

)
, (83)

where Λ > 0 is an integration constant. Then we easily find by combining Eqs. (83) and (64) that
the Hubble rate as a function of the cosmic time is (recall that c =

√
12),

H(t) =
γΛ

2
−
γ2t

2
. (84)

Hence, the resulting evolution is a quasi-de Sitter evolution, if Λ is chosen to be quite large so that
it dominates the evolution at the early-time era, in which case H(t) ' γΛ

2
. Also it is trivial to see

that ä > 0, so the solution (84) describes an inflationary era. Finally, let us now demonstrate if the
resulting cosmology is compatible with the Planck data. Firstly, let us see how the spectral index
becomes in view of Eq. (81) and due to the fact that FRRR = 0, the spectral index becomes,

ns = 1 +
c

√
3(N + q)

−
cN

√
3(N + q)2

−
cq

√
3(N + q)2

+
2N

(N + q)2
+

2q

(N + q)2
. (85)
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By using the value of c, namely c =
√

12, and also for N = 60 and q = −118, the observational
indices become,

ns ' 0.9658, r ' 0.00346842 . (86)

Recall that the 2015 Planck data constrain the observational indices as follows,

ns = 0.9644± 0.0049 , r < 0.10 , (87)

and also, the latest BICEP2/Keck-Array data constrain the scalar-to-tensor ratio as follows,

r < 0.07 , (88)

at 95% confidence level. Hence, the observational indices (86) are compatible to both the Planck
and the BICEP2/Keck-Array data.
Hence, by using a bottom-up approach, we found in an analytic way the F (R) gravity which may
realize a viable set of observational indices (ns , r). In principle, more choices for the observational
indices are possible, although in most of the cases, semi-analytic results will be obtained, due to
the complexity of the differential equation (72).
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Autonomous Dynamical System Approach for F (R) Gravity

Based on S.D. Odintsov and V.K. Oikonomou, arXiv:1711.03389, Phys. Rev. D accepted
Motivation
Why to look for an autonomous dynamical system approach for F (R) gravity?
Non-linear dynamical systems, even the autonomous ones, can be studied by using the Hartman-Grobman theo-
rem, only in the case that the fixed points are hyperbolic, and only in this case serious information regarding the
stability of the fixed points can be obtained.
A convincing non-autonomous example is the following:
Consider the one dimensional dynamical system ẋ = −x + t. The solution can be easily found to be x(t) =

t − 1 + e−t (x0 + 1), from which it is obvious that all the solutions asymptotically approach t − 1 for t →∞.
Also it is easy to see that the only fixed point is the time-dependent solution x = t, which however is not a
solution to the dynamical system.
In addition, a standard analysis by using the fixed point theorems, shows that the vector field actually move away
from the attractor x(t) = t − 1, which is simply wrong.
Therefore, for F (R) gravity, a way to obtain an autonomous dynamical system is needed. With regards to the
inflationary era, this study will reveal:

The existence of de Sitter fixed points.

Their stability, either studied numerically, or analytically.

The stability of a fixed point can reveal important properties of the phase space, for example one could argue
that the graceful exit from the inflationary era is a feature related to the existence of unstable de Sitter attractors
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The vacuum F (R) gravity autonomous dynamical system
The vacuum f (R) gravity action is,

S =
1

2κ2

∫
d

4x
√
−gf (R) , (89)

where κ2 = 8πG = 1
M2

p
and also Mp is the Planck mass scale.

The equations of motion are:

F (R)Rµν(g)−
1

2
f (R)gµν −∇µ∇ν f (R) + gµν�F (R) = 0 , (90)

which can be written as follows,

Rµν −
1

2
Rgµν =

κ2

F (R)

(
Tµν +

1

κ2

( f (R)− RF (R)

2
gµν +∇µ∇νF (R)− gµν�F (R)

))
, (91)

with the prime indicating differentiation with respect to the Ricci scalar.
For the FRW metric,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dx i
)2

, (92)

where a(t) is the scale factor, the cosmological equations of motion become,

0 =−
f (R)

2
+ 3
(

H2 + Ḣ
)

F (R)− 18
(

4H2Ḣ + HḦ
)

F ′(R) , (93)

0 =
f (R)

2
−
(

Ḣ + 3H2
)

F (R) + 6
(

8H2Ḣ + 4Ḣ2 + 6HḦ +
...
H
)

F ′(R) + 36
(

4HḢ + Ḧ
)2

F ′(R) , (94)

where F (R) = ∂f
∂R , F ′(R) = ∂F

∂R , and F ′′(R) = ∂2F
∂R2 .

What is now needed is to find suitable variables in order to construct the autonomous dynamical system.
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Choice of the dynamical variables
we shall introduce the following variables,

x1 = −
Ḟ (R)

F (R)H
, x2 = −

f (R)

6F (R)H2
, x3 =

R

6H2
. (95)

In the following we shall use the e-foldings number N, instead of the cosmic time, so the derivative with respect
to the e-foldings number can be expressed as follows,

d

dN
=

1

H

d

dt
, (96)

which shall be useful. Hence, by using the variables (95) we obtain the following dynamical system,

dx1

dN
= −4− 3x1 + 2x3 − x1x3 + x2

1 , (97)

dx2

dN
= 8 + m − 4x3 + x2x1 − 2x2x3 + 4x2 ,

dx3

dN
= −8− m + 8x3 − 2x2

3 ,

where the parameter m is equal to,

m = −
Ḧ

H3
. (98)
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By looking the dynamical system (97), it is obvious that the only N-dependence (or time dependence) is contained
in the parameter m. Also we did not expressed m as a function of N, since we shall assume that this parameter
will take constant values.
The effective equation of state (EoS) for a general f (R) gravity theory is,

weff = −1−
2Ḣ

3H2
, (99)

and it can be written in terms of the variable x3 as follows,

weff = −
1

3
(2x3 − 1) . (100)

By using the dynamical system (97) and the EoS (100), given the value of the parameter m, we shall investigate
the structure of the phase space corresponding to the vacuum f (R) gravity, and we shall discuss in detail the
physical significance and implications of the results.
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The parameter m appearing in the non-linear dynamical system (97) plays an important role, since it is the only
source of time-dependence in the dynamical system. Let us note that for certain cosmological evolutions this
parameter is constant. For example, a quasi de Sitter evolution, in which case the scale factor is,

a(t) = eH0t−Hi t2
, (101)

the parameter m is equal to zero, and the same applies for a de Sitter evolution.
However, in this section we shall not assume that the scale factor has a specific form, but we shall study in
general the cases m ' 0.
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With regard to the m ' 0 case, this is easy to check, since if we solve the differential equation Ḧ
H3 = 0, this

yields the solution,
H(t) = H0 − Hi t , (102)

This means that we focus on cosmologies for which the approximate solution for the evolution is a quasi de Sitter
evolution. This does not mean that the exact Hubble rate is a quasi-de Sitter evolution, but the approximate
f (R) gravity which drives the evolution, leads to an approximate quasi-de Sitter evolution. Interestingly enough,
for the quasi-de Sitter evolution (102), the following conditions hold true,

HḢ � Ḧ, Ḣ � H2
, (103)

which are the slow-roll conditions. Hence the m ' 0 case is related to the slow-roll condition on the inflationary
era.
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de Sitter Inflationary Attractors and their Stability
We study the case m ' 0, which may possibly describe a quasi de Sitter evolution, however we shall analyze the
dynamics of the system (97), for m ' 0 without specifying the Hubble rate.
In the case m ' 0, the fixed points are,

φ
1
∗ = (−1, 0, 2), φ2

∗ = (0,−1, 2) . (104)

The eigenvalues for the fixed point φ1
∗ are (−1,−1, 0), while for the fixed point φ2

∗ these are (1, 0, 0). Hence

both equilibria are non-hyperbolic, but as we show the fixed point φ1
∗ is stable and φ2

∗ is unstable.
Before we proceed let us discuss the physical significance of the two fixed points, and this can easily be revealed
by observing that in both the equilibria (104), we have x3 = 2. By substituting x3 = 2 in Eq. (100), we get
weff = −1, so effectively we have two de Sitter equilibria.
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Also it is worth to have a concrete idea on how the dynamical system behaves analytically. Actually, the third
equation of the dynamical system (97) is decoupled, and the solution of it reads,

x3(N) =
4N − 2ω + 1

2N − ω
, (105)

where ω is an integration constant which can be fixed by the initial conditions. The asymptotic behavior of the
solution (105), that is for large N, is x3 → 2, which is exactly the behavior we indicated earlier.
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Now let us analyze the dynamics of the cosmological system, and for starters we numerically solve the dynamical
system (97) for various initial conditions and with the e-foldings number belonging to the interval N = (0, 60). In
Fig. (1) we present the numerical solutions for the dynamical system (97), for the initial conditions x1(0) = −8,
x2(0) = 5 and x3(0) = 2.6.

0 10 20 30 40 50 60
-2

-1

0

1

2

3

N

x
1
,x

2
,x

3

Figure: Numerical solutions x1(N), x2(N) and x3(N) for the dynamical system (97), for the initial conditions
x1(0) = −8, x2(0) = 5 and x3(0) = 2.6, and for m ' 0.
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Approximate Form of the f (R) Gravities Near the de Sitter Attractors
Effectively what we seek for is the behavior of the f (R) gravities near the fixed points and with the slow-roll

approximation holding true. Let us start with the first fixed point, namely φ1
∗ = (−1, 0, 2), so the following

differential equations must hold true simultaneously at the fixed point,

−
d2f

dR2

Ṙ

H df
dR

' −1,
f

H2 df
dR 6

' 0 , (106)

which stem from the conditions x1 ' −1 and x2 ' 0. Since m ' 0 (or equivalently since the slow-roll
approximation holds true), the left differential equation can be written as follows,

− 24Hi
d2f

dR2
−

df

dR
= 0 , (107)

which can easily be solved and it yields,

f (R) ' Λ1 − 24Λ2e
− R

24Hi . (108)

The f (R) gravity solution (108) is nothing but the approximate form of the f (R) gravity in the large curvature
era, which generates the quasi-de Sitter evolution of Eq. (102) or equivalently, that yields m ' 0.
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Now let us consider the case of the second de Sitter fixed point, namely φ2
∗ = (0,−1, 2), and in this case the

conditions x1 ' 0 and x2 ' −1 become,

−
d2f

dR2

Ṙ

H df
dR

' 0, −
f

H2 df
dR 6

' −1 . (109)

By using the fact that R ' 12H2, when the quasi-de Sitter evolution is taken into account, the second differential
equation can be written,

f '
df

dR

R

2
, (110)

which can be solved to yield,

f (R) ' αR2
. (111)

The solution (111) is not the exact form of the f (R) gravity which leads the cosmological system to the fixed

point, but it is the approximate form of the f (R) gravity near the fixed point φ1
∗ which corresponds to the case

m ' 0. The approximate f (R) gravity of Eq. (111) is very similar to the R2 model.

This result is interesting, since it is well known (K.Bamba, R.Myrzakulov, S.D.Odintsov and L.Sebastiani, Phys.

Rev. D 90 (2014) 043505) that R2 corrections to viable f (R) gravities, like the exponential, always trigger
graceful exit from inflation, see the well-known viable Starobinsky inflation model.
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R2-corrected Logarithmic F (R) gravity

The first model

I =

∫
M

d4
√
−g

[
R

κ2
+ γ(R)R2 + fDE(R) + Lm

]
, (112)

The first Friedmann equation

0 =
6H2

κ2
− γ(R)

[
6RḢ − 12HṘ

]
+ γ
′(R)

[
24HRṘ − 6R2

(
H2 + Ḣ

)]
+ γ
′′(R)

[
6HR2Ṙ

]
+

fDE − (6H2 + 6Ḣ)f ′DE(R) + 6Hḟ ′DE(R)− ρm , (113)

In order to reproduce the early-time acceleration

γ(R) = γ0

(
1 + γ1 log

[
R

R0

])
, 0 < γ0 , γ1 , (114)

where R0 is the curvature of the Universe at the end of inflation and γ0 , γ1 are positive dimensional constants.
Since we would like to avoid the effects of R2-gravity in the limit of small curvature

γ1 �
1

log
[

R0
4Λ

] � 1 , (115)

where R = 4Λ is the curvature of the Universe when the dark energy is dominant, and Λ is the Cosmological
constant. In the following, we will assume that fDE(R) and Lm in (283) are negligible in the limit of high
curvatures. The de Sitter solution with constant curvature RdS = 12HdS follows from (113) and it reads,

H2
dSκ

2 =
1

12γ0γ1
, RdSκ

2 =
1

γ0γ1
. (116)
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If we perturb the de Sitter solution as follows,

H = HdS + δH(t) , |δH(t)/HdS| � 1 , (117)

by keeping first order terms with respect to δH(t),

12HdS

κ2

[(
1− 24H2

dSγ0γ1κ
2
)
δH(t) + 3γ0κ

2
(

2 + 3γ1 + 2γ1 log

[
RdS

R0

])
(3HdSδḢ(t) + δḦ(t))

]
' 0 .

(118)
In the limit R0 � RdS the solution of this equation reads,

δH(t) ' h±e∆±t
, ∆± =

HdS

2

−3±

√
log
[

RdS
R0

] (
16 + 9 log

[
RdS
R0

])
log
[

RdS
R0

]
 , (119)

where h± are constants depending on the sign of ∆±. When the plus sign, the de Sitter expansion is unstable.
We obtain,

H ' HdS

(
1− h0e

HdS(t−t0)
N

)
, (120)
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where t0 is the time at the end of inflation when R ' R0 and also h0, R0 and N stand for,

h0 =
(HdS − H0)

HdS

, N =
3

4
log

[
RdS

R0

]
, R0 = 12H2

0 . (121)

In order to study the behavior of the solution during the exit from inflation, we introduce the e-foldings number,

N = log

[
a(t0)

a(t)

]
≡
∫ t0

t

H(t)dt . (122)

By using Eq. (120) we have,
N ' HdS(t0 − t) , (123)

where we have assumed that N � HdS(t − t0), or equivalently N � N. Thus, the Hubble parameter may be
expressed as follows,

H ' HdS

(
1− h0e−

N
N

)
. (124)

At the beginning of inflation we have N � N and H ' HdS, while at the end of the early-time acceleration,

when N = 0, one recovers H = H0.
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During the quasi de Sitter expansion of inflation the Hubble parameter slowly decreases. The slow-roll parameters
are defined as follows,

ε = −
Ḣ

H2
=

1

H

dH

dN
, −η = β =

Ḧ

2HḢ
, (125)

where we assumed that the constant-roll condition holds true. At the beginning of the early-time acceleration the
first slow-roll parameter ε is small, in which case the slow-roll approximation regime is realized. For the solution
(124) in the limit N � N, we get,

ε '
h0e

HdS(t−t0)
N

N
=

h0e−
N
N

N
. (126)

On the other hand, for the β parameter we obtain a constant value, namely,

β =
1

2N
. (127)

This means that the model at hand satisfies the condition for constant-roll inflation.
In the case of F (R)-gravity, the inflationary indices have the following form,

(1− ns ) '
2ε̇

Hε
= −

2

ε

dε

dN
, r ' 48ε2

. (128)

By calculating these, we obtain,

(1− ns ) ' 4β − 2ε '
2

N
, r ' 48

h2
0e−2 N

N

N 2
. (129)
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R2-corrected Logarithmic F (R) gravity

We can see that in the computation of the spectral index ns we can omit the contribution of ε which tends to
vanish for N � N. Since the constant-roll inflationary condition is assumed, it turns out that this index is in
fact independent on the total e-foldings number. The latest Planck data constrain the spectral index and the
scalar-to-tensor ratio as follows,

ns = 0.9644± 0.0049 , r < 0.10 . (130)

As a consequence, we must require N ' 60 in order to obtain a viable inflationary scenario. This means that
at the beginning of inflation we have 60 � N, a condition which solves the problem of initial conditions of the
Friedmann Universe model we study.
By imposing N ' 60 in Eq. (121) we obtain,

RdS ' R0e80
, (131)

The characteristic curvature at the time of inflation is RdS ' 10120Λ, in which case one has R0 ' 1.8 × 1085Λ
and from Eq. (115) we must require γ1 � 0.005. Finally, the relation between γ0 and γ1 is fixed by Eq. (116)
and we obtain,

γ0 '
e−80

γ1R0κ2
. (132)
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Constant-roll Evolution in F (R) Gravity

The most natural generalization of the constant-roll condition in the Jordan frame is the following,

Ḧ

2HḢ
' β , (133)

where β is some real parameter. The condition (133) is the most natural generalization of the constant-roll
condition used in scalar-tensor approaches, which is,

φ̈

Hφ̇
= β , (134)

since the condition (134) is nothing else but the second slow-roll index η, which in the most general case is equal

to η ∼ − Ḧ
2HḢ

. Equations of motion,

3FR H2 =
FR R − F

2
− 3HḞR , (135)

− 2FR Ḣ =F̈ − HḞ , (136)

where FR stands for FR = ∂F
∂R and also the “dot” denotes differentiation with respect to t. The dynamics of

inflation in the context of F (R) gravity are governed by four inflationary indices, εi , i = 1, ...4, which are defined
as follows

ε1 = −
Ḣ

H2
, ε2 = 0 , ε3 =

ḞR

2HFR

, ε4 =
Ė

2HE
, (137)

with the function E being equal to,

E =
3Ḟ 2

R

2κ2
. (138)

Also for the calculation of the scalar-to-tensor ratio r , the quantity Qs is needed, which is defined as follows,

Qs =
E

FR H2(1 + ε3)2
. (139)
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Constant-roll Evolution in F (R) Gravity

The spectral index of primordial curvature perturbations ns , in the case that ε̇i ' 0, is equal to [?, ?, ?],

ns = 4− 2νs , (140)

with νs being equal to,

νs =

√
1

4
+

(1 + ε1 − ε3 + ε4)(2− ε3 + ε4)

(1− ε1)2
. (141)

The above relation is quite general and holds true not only in the case that εi � 1, but also when εi ∼ O(1).
With regard to the scalar-to-tensor ratio, in the context of vacuum F (R) gravity theories, it is defined as follows,

r =
8κ2Qs

FR

, (142)

where the quantity Qs is given in Eq. (139) above, and for the specific case of a vacuum F (R) gravity, the
scalar-to-tensor ratio is equal to,

r =
48ε2

3

(1 + ε3)2
. (143)

The constant-roll condition (133), affects the inflationary indices of inflation εi , i = 1, ..., 4 appearing in Eq.
(137), which can be written as follows,

ε1 = −
Ḣ

H2
, ε2 = 0 , ε3 =

ḞRR

2HFR

(
24HḢ + Ḧ

)
, ε4 =

FRRR

HFR

Ṙ +
R̈

HṘ
, (144)
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Constant-roll Evolution in F (R) Gravity

Action,

F (R) = R − 2Λ

(
1− e

R
bΛ

)
− γ̃Λ

(
R

3m2

)n

, (145)

where Λ = 7.93m2 , γ̃ = 1/1000, m = 1.57 × 10−67eV, b is an arbitrary parameter and n is a positive real
parameter.
Spectral index

ns = 4−

√
(6n(n − 1)(−3β + (β + 2)n − 1) + 36n(−33β + 35(β + 2)n − 71))2

(36n(−12β + 12(β + 2)n − 25) + 6n(n − 1))2
. (146)

scalar-to-tensor ratio

r =
48 (6n − (6n − 36) n)2

(6n − (6n + 828) n)2
. (147)

It is noteworthy that both the spectral index and the scalar-to-tensor ratio depend only on β or n. A detailed

analysis reveals that there is a large range of parameter values that may render the model compatible with the

observations. For example by choosing (n, β) = (2.1,−8.7), the spectral index becomes ns = 0.966239 and

the corresponding scalar-to-tensor ratio becomes r = 0.0119893. Also for (n, β) = (0.9,−1.08), the spectral

index becomes ns = 0.96742 and the corresponding scalar-to-tensor ratio becomes r = 0.0936944. Finally for

(n, β) = (1.5,−0.4), the spectral index becomes ns = 0.960444 and the corresponding scalar-to-tensor ratio

becomes r = 0.0669277.
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Late-time Acceleration Era

The model I appearing in Eq. (283) during the late-time era. A modified version of exponential gravity,

fDE(R) = −
2Λg(R)(1− e−bR/Λ)

κ2
, 0 < b , (148)

where b is a positive parameter and Λ is the cosmological constant. The function of the Ricci scalar g(R) is
necessary to stabilize the theory at large redshifts

g(R) =

[
1− c

(
R

4Λ

)
log

[
R

4Λ

]]
, 0 < c , (149)

where c is a real and positive parameter. As a general feature of the model, we immediately see that, at
R = 0, one has fDE(R) = 0 and we recover the Minkowski spacetime solution of Special Relativity. When

4Λ ≤ R, fDE(R) ' −2Λ/κ2 we obtain the standard evolution of the ΛCDM model. Moreover, since |fDE(R)| ∼
10−120M4

Pl , we have that the modification of gravity for the dark energy sector is completely negligible in the

high curvature limit of the inflationary era, where R/κ2 ∼ M4
Pl .

When g(R) ' 1, it is easy to see that the following conditions hold true,

|FR (R)− 1| � 1 , 0 < FRR (R) , when 4Λ < R . (150)

The first condition is necessary in order to obtain the correct value of the Newton constant and avoid anti-

gravitational effects, while the second condition guarantees the stability of the model with respect to the matter

perturbations.
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Late-time Acceleration Era

During the matter and radiation domination eras, the model we used mimics an effective cosmological constant,
if the function g(R) in Eq. (149) is close to unity, namely

c �
[(

R

4Λ

)
log

[
R

4Λ

]]−1

, 4Λ ≤ R � R0 , (151)

where recall that R0 is the curvature of the Universe at the end of the inflationary era. For example, if c = 10−5,
we obtain fDE ' 2Λ/κ2 up to the value R ' 4Λ× 104. For larger values of the curvature, matter and radiation
dominate strongly the evolution.
In order to investigate the behavior of our model during radiation and matter domination eras, but also during
the transition to the late-time era, we need to introduce the following variable,

yH ≡
ρDE

ρm(0)

≡
H(z)2

m2
− (z + 1)3 − χ(z + 1)4

, (152)

which is known as the “scaled dark energy”. This variable encompasses the ratio between the effective dark
energy and the standard matter density, evaluated at the present time, with the matter density defined as follows,

ρm(0) =
6m2

κ2
, (153)

where m is the mass scale associated with the Planck mass. In the expression (152), the variable z = [1/a(t)− 1]

denotes the redshift as usual, and also χ stands for χ ≡ ρr(0)/ρm(0).
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Late-time Acceleration Era

If one extends the expression as follows,

F (R) = κ
2
0

[
R

κ2
+ γ(R)R2 + fDE(R)

]
, (154)

it is possible to derive FRW eq.,

d2yH (z)

dz2
+ J1

dyH (z)

dz
+ J2yH (z) + J3 = 0 , (155)

where the functions Ji , i = 1, 2, 3 stand for,

J1 =
1

(z + 1)

[
−3−

1

yH + (z + 1)3 + χ(z + 1)4

1− FR (R)

6m2FRR (R)

]
,

J2 =
1

(z + 1)2

[
1

yH + (z + 1)3 + χ(z + 1)4

2− FR (R)

3m2FRR (R)

]
,

J3 = −3(z + 1)

−
(1− FR (R))((z + 1)3 + 2χ(z + 1)4) + (R − F (R))/(3m2)

(z + 1)2(yH + (z + 1)3 + χ(z + 1)4)

1

6m2FRR (R)
. (156)
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Late-time Acceleration Era

At the late time regime, where z � 1, we can avoid the contribution of the matter and radiation fluids, in which
case, the solution of Eq. (155) reads,

yH '
Λ

3m2
+ y0Exp

[
±i

√
1

ΛFRR (4Λ)
−

25

4
log[z + 1]

]
, (157)

with y0 being an integration constant. Since for the exponential gravity ΛFRR (4Λ) � 1, the argument of the
square root is positive, in effect, dark energy oscillates around the phantom divide line w = −1. The frequency
of the oscillation with respect to log[z + 1] is given by,

ν =
1

2π

√
1

ΛFRR (4Λ)
−

25

4
. (158)

Generally speaking, since ΛFRR (4Λ) ' 2b2 exp[−4b], the oscillation frequency at past times may diverge. How-
ever in our model, due to the presence of the function g(R) chosen as in Eq. (149), one has,

ν '
√

2/c

2π(z + 1)
. (159)

This means that, back into the past, during the radiation and matter domination eras, the frequency of the

effective dark energy oscillations, tend to decrease and the theory is protected against singularities.
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Dark Energy Oscillations for the Model I

Now let us investigate the dark energy oscillations issue for the model I appearing in Eqs. (283) and (114). We
assume the parameters,

κ
2 =

16π

M2
Pl

, γ0 =
e−80

γ1R0κ2
, γ1 = 10−4

, R0 = 1.8× 1085Λ , (160)

where,
M2

Pl = 1.2× 1028eV2
, Λ = 1.1895× 10−67eV2

. (161)

The second condition in Eq. (160) leads to a realistic de Sitter curvature for the early-time acceleration, which

is RdS ' 10120Λ. Moreover, the third condition in Eq. (160) ensures that the high curvature corrections of the
model I disappear after the inflation, when R < R0.
The constant parameters of the function fDE(R) in Eqs. (148)–(149) are chosen as follows,

b =
1

2
, c = 10−5

. (162)

In this way, we obtain an optimal reproduction of the ΛCDM model, and the effects of dark energy remain

negligible during the early and mid stages of the matter and radiation eras.
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Dark Energy Oscillations for the Model I

Now we need to fix the boundary conditions of our cosmological dynamical system at large redshift z = zmax.
They can be inferred from the form of ρDE for the case of F (R)-modified gravity, namely,

ρDE =
1

κ2
0FR (R)

[
(RFR (R)− F (R))− 6HḞR (R)

]
. (163)

When Λ� R � R0 we obtain,

yH (z) '
(

Λ

3m2

)(
g(R)− 6H2gRR (R)(z + 1)R

]
, (164)

where R ≡ R(z) and H ≡ H(z) are functions of the redshift. At large redshift, during the matter era, we have

to take R = 3m2(z + 1)3 and H = m(z + 1)3/2 and the boundary conditions of the system are given by,

yH (zmax) =

(
Λ

3m2

)[
g(Rmax)− 54m4(zmax + 1)6gRR (Rmax)

]
,

dyH

dz
(zmax) = 3Λ(z + 1)2

[
gR (Rmax)− 6R2

maxgRRR (Rmax)− 12RmaxgRR (Rmax)
]
, (165)

where,
Rmax = 3m2(zmax + 1)3

. (166)
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Dark Energy Oscillations for the Model I

For zmax = 10, in which case χ(zmax + 1) ' 0.00341� 1, and we effectively are in a matter dominated Universe,
we obtain,

yH (zmax) = 2.1818 ,
dyH

dz
(zmax) = −2.6× 10−5

, zmax = 10 . (167)

These values can be compared with the corresponding ones for the ΛCDM model, where yH is a constant, namely
yH = Λ/(3m2) = 2.17857. We argue that our model is extremely close to the ΛCDM model at very high redshift.
Here we recall that the first observed galaxies correspond to a redshift z ' 6.
Finally, the contributions of matter and radiation are determined by the values of m2 and χ in (152). The
cosmological data indicate that,

m2 ' 1.82× 10−67eV2
, χ ' 3.1× 10−4

. (168)

Numerical solution.

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 55 / 133



Dark Energy Oscillations for the Model I

Despite of the fact that at high redshifts, the amplitude of the oscillations of the effective EoS parameter around
the phantom divide line gradually grows, we see that their frequency decreases and thus, singularities are avoided.
In order to measure the matter energy density ρm(z) at a given redshift, we introduce the parameter ym(z) as

ym(z) =
ρm(z)

ρm(0)

≡ (z + 1)3
. (169)

For −1 < z < 1 we see that yH (z) is nearly constant and it is dominant over ym(z), for z < 0.4, a feature that
is in full agreement with the ΛCDM description.
The ΩDE(z) parameter,

ΩDE(z) ≡
ρDE

ρeff

=
yH (z)

yH (z) + (z + 1)3 + χ(z + 1)4
, (170)

is frequently used to express the ratio between the dark energy density ρDE and the effective energy density ρeff

of our FRW Universe. Thus, by extrapolating yH (z) at the current redshift z = 0, from Eqs. (170), we obtain,

ΩDE(z = 0) = 0.685683 , ωDE(z = 0) = −0.998561 . (171)

The latest cosmological data indicate that, ΩDE(z = 0) = 0.685 ± 0.013 and ωDE(z = 0) = −1.006 ± 0.045.

Thus, our model fits the observational data at present time.
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Mimetic F(R) gravity

This theory makes natural unification of inflation, late-time acceleration and dark matter via unique gravitational
theory. Proposal of mimetic theory:Mukhanov-Chamseddine. In the mimetic model, we parametrize the metric
in the following form.

gµν = −ĝρσ∂ρφ∂σφĝµν . (172)

Instead of considering the variation of the action with respect to gµν , we consider the variation with respect

to ĝµν and φ. Because the parametrization is invariant under the Weyl transformation ĝµν → eσ(x)ĝµν ,
the variation over ĝµν gives the traceless part of the equation. Proposal of mimetic F(R) gravity: Nojiri-
Odintsov,arXiv:1408.3561. In case of F (R) gravity, by using the parametrization of the metric as above,

S =

∫
d4x
√
−g (ĝµν , φ) (F (R (ĝµν , φ)) + Lmatter) . (173)
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Mimetic F(R) gravity

Field equations have the following form:

0 =
1

2
gµνF (R (ĝµν , φ))− R (ĝµν , φ)µν F ′ (R (ĝµν , φ))

+∇
(

g (ĝµν , φ)µν

)
µ
∇
(

g (ĝµν , φ)µν

)
ν

F ′ (R (ĝµν , φ))

− g (ĝµν , φ)µν � (ĝµν , φ) F ′ (R (ĝµν , φ)) +
1

2
Tµν

+ ∂µφ∂νφ
(

2F (R (ĝµν , φ))− R (ĝµν , φ) F ′ (R (ĝµν , φ))

−3�
(

g (ĝµν , φ)µν

)
F ′ (R (ĝµν , φ)) +

1

2
T

)
, (174)

and

0 =∇
(

g (ĝµν , φ)µν

)µ (
∂µφ

(
2F (R (ĝµν , φ))− R (ĝµν , φ) F ′ (R (ĝµν , φ))

−3�
(

g (ĝµν , φ)µν

)
F ′ (R (ĝµν , φ)) +

1

2
T

))
. (175)

We should note that any solution of the standard F (R) gravity is also a solution of the mimetic F (R) gravity. This

is because in the standard F (R) gravity, Eqs. (174)–(175) are always satisfied since we find 2F (R)− RF ′(R)−
3�F ′(R) + 1

2 T = 0. The mimetic F (R) gravity is ghost-free and conformally invariant theory.
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Mimetic F(R) gravity

FRW metric:
ds2 = −dt2 + a(t)2

∑
i=1,2,3

dx i 2
, (176)

with R = 6Ḣ + 12H2 and φ is equal to t (due to mimetic form of metric).
Field equations: Eq. (175) gives

Cφ

a3
=2F (R)− RF ′(R)− 3�F ′(R) +

1

2
T

=2F (R)− 6
(

Ḣ + 2H2
)

F ′(R) + 3
d2F ′(R)

dt2
+ 9H

dF ′(R)

dt
+

1

2
(−ρ + 3p) . (177)

Here Cφ is a constant. Then in the second line of Eq. (174), only (t, t) component does not vanish and behaves

as a−3 and therefore the solution of Eq. (177) with Cφ 6= 0 plays a role of the mimetic dark matter. On the
other hand the (t, t) and (i, j)-components in (174) give the identical equation:

0 =
d2F ′(R)

dt2
+ 2H

dF ′(R)

dt
−
(

Ḣ + 3H2
)

F ′(R) +
1

2
F (R) +

1

2
p . (178)

By combining (177) and (178), we obtain

0 =
d2F ′(R)

dt2
− H

dF ′(R)

dt
+ 2ḢF ′(R) +

1

2
(p + ρ) +

4Cφ

a3
. (179)
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Mimetic F(R) gravity

When Cφ = 0, the above equations reduce to those in the standard F (R) gravity, or in other words, when
Cφ 6= 0, the equation and therefore the solutions are different from those in the standard F (R) gravity. Lagrange

multiplier constraint presentation: Extended model. We may consider the following action of mimetic F (R)
gravity with scalar potential:

S =

∫
d4x
√
−g
(

F (R (gµν))− V (φ) + λ
(

gµν∂µφ∂νφ + 1
)

+ Lmatter

)
. (180)

This action is of the sort of modified gravity with Lagrange multiplier constraint. Working with viable modified

gravity one can reproduce the arbitrary evolution by changing scalar potential. This gives natural unification of

inflation, dark matter and dark energy.
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Singular evolution

The finite-time future singularities are classified as follows: Nojiri-Odintsov-Tsujikawa, PRD71,2005,063004.

Type I (“Big Rip”) : When t → ts , the scale factor diverges a, the effective energy density ρeff , the
effective pressure peff diverge, a→∞, ρeff →∞, and |peff | → ∞. This type of singularity was
presented in Caldwell-Kamionkowski-Weinberg,PRL91, 2003 where it was indicated that Rip occurs before
entering singularity itself.

Type II (“sudden”) : When t → ts , the scale factor and the effective energy density is finite, a→ as ,
ρeff → ρs but the effective pressure diverges |peff | → ∞.

Type III : When t → ts , the scale factor is finite, a→ as but the effective energy density and the effective
pressure diverge, ρeff →∞, |peff | → ∞.

Type IV : For t → ts , the scale factor, the effective energy density, and the effective pressure are finite,
that is, a→ as , ρeff → ρs , |peff | → ps , but the higher derivatives of the Hubble rate H ≡ ȧ/a diverge.

There is also possibility of change to decceleration in future, or approaching dS or infinite singularity (like Little

Rip). It is interesting that future singularities may occur not only dark energy epoch but also at inflationary

epoch: Barrow-Graham, PRD2015;Nojiri-Odintsov-Oikonomou,PRD91 (2015)084059.
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Singular evolution

We consider the following action:

S =

∫
d4x
√
−g

{
1

2κ2
R −

1

2
ω(φ)∂µφ∂

µ
φ− V (φ) + Lmatter

}
. (181)

Choice of Hubble rate.In the case of the Type II and IV singularities, the Hubble rate H(t) may be chosen in the
following form:

H(t) = f1(t) + f2(t) (ts − t)α . (182)

Here f1(t) and f2(t) are smooth (differentiable) functions of t and α is a constant. If 0 < α < 1, there appears
Type II singularity and if α is larger than 1 and not integer, there appears Type IV singularity. We first consider
the simple case that f1(t) = 0 and f2(t) = f0 with a positive constant f0. In the neighborhood of t = ts , we find
that,

ω(φ) =
2αf0

κ2
(ts − φ)α−1

, V (φ) ∼ −
αf0

κ2
(ts − φ)α−1

, (183)

and we find

ϕ = −
2
√

2αf0

κ (α + 1)
(ts − φ)

α+1
2 , (184)

Consequently, the scalar potential reads,

V (ϕ) ∼ −
αf0

κ2

{
−
κ (α + 1)

2
√

2αf0

ϕ

} 2(α−1)
α+1

. (185)
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Singular evolution

Therefore, when the following condition holds true,

− 2 <
2 (α− 1)

α + 1
< 0 , (186)

there occurs the Type II singularity. Accordingly, the Type IV singularity occurs when the following holds true,

0 <
2 (α− 1)

α + 1
< 2 . (187)

More examples maybe presented. Qualitatively: There could be three cases,

1 The Type IV singularity occurs during the inflationary era.

2 The inflationary era ends with the Type IV singularity.

3 The Type IV singularity occurs after the inflationary era.

Most realistically, we have second and third case, when we may get realistic inflation while universe survive

transition over Type IV singularity. This scenario is also extended to F(R) gravity.Furthermore, one can get

unification of singular inflation with dark energy via the same modified gravity. Singular inflation with exit thanks

to singularity.
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F (R) Gravity Description Near the Type IV Singularity: A Singular Toy
Model

SDO and V.Oikonomou, Singular Inflationary Universe from F(R)F(R) Gravity,Phys.Rev. D92 (2015) no.12,
124024 DOI: 10.1103/PhysRevD.92.124024
The main feature of the toy inflationary solution is that it produces an inflationary era, so for a long time, the
toy inflationary solution should be a de Sitter solution. Also, we choose the Type IV singularity to occur at the
end of the inflationary era. To state this more correctly, the Type IV singularity indicates when the inflationary
era ends.
The toy inflationary solution which we shall describe, is described by the following Hubble rate,

H(t) = c0 + f0 (t − ts )α , (188)

with the assumption that c0 � f0 and also for the cosmic times near the inflationary era, it holds true that
c0 � f0 (t − ts )α, for α > 0. So in effect, near the time instance t ' ts , the cosmological evolution is a nearly
de Sitter. Also, the Type IV singularity occurs at t = ts , as it can be seen from Eq. (188). Particularly, the
singularity structure of the cosmological evolution (188), is determined from the values of the parameter α, and
for various values of α it is determined as follows,

α < −1 corresponds to the Type I singularity.

−1 < α < 0 corresponds to Type III singularity.

0 < α < 1 corresponds to Type II singularity.

α > 1 corresponds to Type IV singularity.
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F (R) Gravity Description Near the Type IV Singularity: A Singular Toy
Model

So in order to have a Type IV singularity we must assume that α > 1, and we adopt this constraint for the
parameter α in the rest of this paper. For α > 1, the cosmological evolution near the Type IV singularity is
a nearly de Sitter evolution. Indeed, since c0 � f0, the term ∼ f0 (t − ts )α is negligible at early times, but it
can easily be seen that it dominates the evolution at late times. The evolution is governed by c0 at early times
and for a sufficient period of time after t = ts , and the evolution is governed by the term ∼ f0 (t − ts )α only
at late times ∼ tp . Also it is important to note that the singularity essentially plays no particular role when one
considers the Hubble rate and other observable quantities at early times. It plays a crucial role in the dynamical
evolution. In the FRW background of Eq. (??), the Ricci scalar reads,

R = 6(2H2 + Ḣ) , (189)

so for the Hubble rate of Eq. (188), the Ricci scalar reads,

R = 12c2
0 + 24c0f0(t − ts )α + 12f 2

0 (t − ts )2α + 6f0(t − ts )−1+α
α , (190)

and consequently near the Type IV singularity, the Ricci scalar is R ' 12c2
0 .
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F (R) Gravity Description

We now investigate which vacuum F (R) gravity can generate the cosmological evolution described by the Hubble
rate (188).
The action of a vacuum F (R) gravity is equal to,

S =
1

2κ2

∫
d

4x
√
−gF (R) , (191)

FRW eq.

− 18
[

4H(t)2Ḣ(t) + H(t)Ḧ(t)
]

F ′′(R) + 3
[

H2(t) + Ḣ(t)
]

F ′(R)−
F (R)

2
= 0 . (192)

The reconstruction method we shall adopt, makes use of an auxiliary scalar field φ, so the F (R) gravity of Eq.
(258) can be written in the following equivalent form,

S =

∫
d

4x
√
−g [P(φ)R + Q(φ)] . (193)

Note that the auxiliary field has no kinetic form so it is a non-dynamical degree of freedom. The reconstruction
method we employ is based on finding the analytic dependence of the functions P(φ) and Q(φ) on the Ricci
scalar R, which can be done if we find the function φ(R). In order to find the latter, we vary the action of Eq.
(260) with respect to φ, so we end up to the following equation,

P′(φ)R + Q′(φ) = 0 , (194)

where the prime in this case indicates the derivative of the corresponding function with respect to the auxiliary

scalar field φ.
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F (R) Gravity Description

Then by solving the algebraic equation (261) as a function of φ, we easily obtain the function φ(R). Correspond-
ingly, by substituting this to Eq. (260) we can obtain the F (R) gravity, which is of the following form,

F (φ(R)) = P(φ(R))R + Q(φ(R)) . (195)

Essentially, finding the analytic form of the functions P(φ) and Q(φ), is the aim of the reconstruction method.
These can be found by varying the action of Eq. (260) with respect to the metric tensor gµν , and the resulting
expression is,

− 6H2P(φ(t))− Q(φ(t))− 6H
dP (φ(t))

dt
= 0 ,(

4Ḣ + 6H2
)

P(φ(t)) + Q(φ(t)) + 2
d2P(φ(t))

dt2
+

dP(φ(t))

dt
= 0 . (196)

By eliminating the function Q(φ(t)) from Eq. (263), we obtain,

2
d2P(φ(t))

dt2
− 2H(t)

dP(φ(t))

dt
+ 4ḢP(φ(t)) = 0 . (197)

Hence, for a given cosmological evolution with Hubble rate H(t), by solving the differential equation (264), we

can have the analytic form of the function P(φ) at hand, and from this we can easily find Q(t), by using the

first relation of Eq. (263). Note that, since the action of the F (R) gravity (258) with the action (260) are

mathematically equivalent, the auxiliary scalar field can be identified with the cosmic time t, that is φ = t.
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F (R) Gravity Description

Let us now apply it for the cosmology described by the Hubble law of Eq. (188), emphasizing to the behavior
near the singularity, that is, for cosmic times t ' ts . By substituting the Hubble rate of Eq. (188) in Eq. (264),
results to the following linear second order differential equation,

2
d2P(t)

dt2
− 2

(
c0 + f0(t − ts )α

) dP(t)

dt
− 4f0(t − ts )−1+α

αP(t) = 0 . (198)

The final form of the F (R) gravity near the Type IV singularity t = ts , which is,

F (R) ' R + a2R2 + a0 , (199)

Note additionally that we have set c1 =
1+c0

4 , so that the coefficient of R in Eq. (272) becomes equal to one,

and therefore we can have Einstein gravity plus higher curvature terms.
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Singular Inflation Analysis and Instabilities for the Inflation Toy Model

The inflationary evolution described by the Hubble rate of Eq. (188) provides the same physical picture that
standard inflation gives. Specifically, during the inflationary era, the cosmological evolution is a nearly de Sitter
evolution, so an exponential expansion occurs, and the scale factor is of the form a(t) ∼ ec0t . More importantly,
the comoving Hubble radius RH = 1

a(t)H(t) shrinks during inflation, and expands after inflation. Moreover, the

Type IV singularity has no particular effect on the comoving quantities, like the comoving Hubble radius. This
remark is very important and this is due to the presence of the parameter c0. If this was not present, then
the standard inflationary picture would not hold true anymore, since a singularity would appear in the comoving
Hubble radius.
Coming back to the inflationary evolution (188), the dynamics of the F (R) gravity cosmological evolution is
determined by the Hubble flow parameters (also known as slow-roll parameters) given below,

ε1 = −
Ḣ

H2
, ε3 =

σ′Ṙ

2Hσ
, ε4 =

σ′′(Ṙ)2 + σ′R̈

Hσ′Ṙ
, (200)

where σ = dF
dR and the prime in the above equation denotes differentiation with respect to the Ricci scalar R.
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Non-Singular HD Inflation

It is of great importance to investigate what new qualitative features does the singularity during inflation brings
along. In order to do so, we shall study the R2 inflation model, with a singularity being included and compare our
results with the ordinary R2 inflation model. This is necessary in order to understand the new qualitative features
of the singular inflation. To start with, let us present the ordinary R2 inflation model, which we modify later
on in order to include a Type IV singularity. In the following, when we mention “ordinary R2 inflation model”,
we mean the non-singular version of the Starobinsky R2 inflation model. For the R2 inflation model, the F (R)
gravity is,

F (R) = R +
1

6M2
R2
, (201)

with M � 1. The FRW equation corresponding to the F (R) gravity (201) is given below,

Ḧ −
Ḣ2

2H
+

M2

2
H = −3HḢ , (202)

and since during inflation, the terms Ḧ and Ḣ can be neglected, the resulting Hubble rate that describes the R2

inflation model of Eq. (201) is,

H(t) ' Hi −
M2

6
(t − ti ) . (203)

with ti the time instance that inflation starts and also Hi the value of the Hubble rate at ti . Let us calculate
the Hubble flow parameters for the ordinary R2 inflation model of Eq. (201), which we will need later in order
to compare with the singular version. By substituting Eqs. (203) and (201) in Eq. (200), the Hubble flow

parameters for the R2 inflation model of Eq. (201) model become,

ε1 =
M2

6
(

Hi − 1
6 M2(t − ti )

)2
, (204)

ε3 = −
2

3

1 +
2

(
−M2

6
+2
(

Hi + 1
6

M2(−t+ti )
)2
)

M2

 ,

ε4 = −
M2

6
(

Hi − 1
6 M2(t − ti )

)2
,

from which we can see that no singularity occurs, as it was expected.
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Non-Singular HD Inflation

The Hubble slow-roll indices (??) for the ordinary R2 inflation model, and also express these in term of the
e−folds number N, which is defined as follows,

N =

∫ t

ti

H(t)dt . (205)

The spectral index of primordial curvature perturbations ns and the scalar-to-tensor ratio in terms of the Hubble
slow-roll parameters ηH and εH are equal to,

ns ' 1− 4εH + 2ηH , r = 48ε2
H , (206)

which holds true only in the case the slow-roll expansion is valid. This is a very important observation, since
if one of the Hubble slow-roll parameters is large enough so that the slow-roll expansion breaks down, then the
observational indices are not given by Eq. (206).
Assuming that the Hubble slow-roll parameters are such, so that the slow-roll approximation holds true, let us
calculate the Hubble slow-roll parameters and inflationary indices for the Hubble rate (203). The Hubble slow-roll
indices read,

εH =
M2

6
(

Hi − 1
6 M2(t − ti )

)2
, ηH = 0 . (207)

We can express the Hubble slow-parameter εH in term of N, and by combining Eqs. (205) and (203), we obtain,

t − ti =
2
(

3Hi +
√

3
√

3H2
i −M2N

)
M2

, (208)

so upon substitution in Eq. (207) we get,

εH =
M2

6H2
i − 2M2N

. (209)
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Non-Singular HD Inflation

Consequently, the spectral index ns and the scalar-to-tensor ratio r , read,

ns = 1−
4M2

6H2
i − 2M2N

, r = 48

(
M2

6H2
i − 2M2N

)2

. (210)

The recent observations of the Planck collaboration have verified that the R2 inflation model is in concordance
with observations, so if we suitably choose M and Hi , concordance may be achieved. Of course our approach
is based on a Jordan frame calculation, but the resulting picture with regards to the observational indices is the
same in both Jordan and Einstein frame. To be more concrete, let us see for which values of Hi , M and N we
can achieve concordance with observations. Assume for example that the number of e-folds is N = 60, so for
M ∼ 1013sec−1, and Hi ∼ 6.29348× 1013sec−1, we obtain that the spectral index of primordial perturbations
ns and the scalar-to-tensor ratio r become approximately,

ns ' 0.966, r ' 0.003468 . (211)

The latest Planck data (2015) indicate that ns and r are approximately equal to,

ns = 0.9655± 0.0062 , r < 0.11 , (212)

so the values given in Eq. (211) are in concordance with the current observational data.
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Singular Inflation

The ordinary R2 inflation can also contain a Type IV singularity that we assume to occur at t = ts . The Hubble
rate that will describe the singular inflation evolution is the following,

H(t) ' Hi −
M2

6
(t − ti ) + f0 (t − ts )α , (213)

and we shall assume that α > 1, so that a Type IV singularity occurs. In addition, we assume that Hi � f0,
M � f0 and also that f0 � 1, and consequently the singularity term is significantly smaller in comparison to the
first two terms in Eq. (213). Hence, at the Hubble rate level, the singularity term remains small during inflation
and therefore it can be unnoticed. Therefore, near t ' ts , the F (R) gravity that can generate the evolution
(213) is the one appearing in Eq. (201). As we demonstrated previously, the effects of the singularity will not
appear at the level of observable quantities, but the singularity will strongly affect the dynamics of the system.
Now we investigate in detail if this holds true in this case too. The Hubble flow indices are:

ε1 =
M2

6
(

Hi − 1
6 M2(t − ti )

)2
, (214)

ε3 =
f0(t − ts )−2+α(−1 + α)α + 4

(
Hi − 1

6 M2(t − ti )
) (
−M2

6

)
M2

1 +
2

(
−M2

6
+2
(

Hi + 1
6

M2(−t+ti )
)2
)

M2

(Hi − 1
6 M2(t − ti )

)

ε4 =
M4

9 + 4f0

(
Hi − 1

6 M2(t − ti )
)

(t − ts )−2+α(−1 + α)α + f0(t − ts )−3+α(−2 + α)(−1 + α)α(
Hi − 1

6 M2(t − ti )
) (
− 2

3 M2
(

Hi − 1
6 M2(t − ti )

)
+ f0(t − ts )−2+α(−1 + α)α

) .
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Scenario I

If ts < tf , and 2 < α < 3, the parameter ε4 becomes singular at t = ts , and the rest Hubble flow parameters
are not singular. Particularly, in this case, ε1 remains the same as in Eq. (204), while ε3 becomes simplified and
behaves as,

ε3 ' −
2

3

1 +
2

(
−M2

6
+2
(

Hi + 1
6

M2(−t+ti )
)2
)

M2

 , (215)

which is identical to the one appearing in Eq. (204) which corresponds to the ordinary R2 inflation model.
Therefore, only the parameter ε4 remains singular at t = ts , and takes the following form,

ε4 ' −
3
(

M4

9 + f0(t − ts )−3+α(−2 + α)(−1 + α)α
)

2M2
(

Hi − 1
6 M2(t − ti )

)2
. (216)

The Hubble flow parameters control the slow-roll expansion, so a singularity at a higher order slow-roll parameter
indicates a dynamical instability of the system. Actually, it indicates that at higher orders, the slow-roll pertur-
bative expansion breaks down, and therefore this indicates that the solution describing the dynamical evolution
of the cosmological system up to that point, ceases to be an attractor of the system. This clearly may be viewed
as a mechanism for graceful exit from inflation, at least at a higher order.
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Scenario I

It is worth calculating the spectral index of primordial curvature perturbations ns and the scalar-to-tensor ratio
r in this case,

ns = 1−
4M2

6H2
i − 2M2N

, r = 48

(
M2

6H2
i − 2M2N

)2

. (217)

Obviously, concordance with the observations can be achieved, like in the ordinary R2 inflation model. For
example, if we assume that the total number of e-folds is N = 55, and also by choosing M ∼ 1013sec−1 and
Hi ∼ 6.15964× 1013sec−1, the spectral index of primordial curvature perturbations ns and the scalar-to-tensor
ratio become,

ns ' 0.966, r ' 0.003468 , (218)

as in the ordinary R2 inflation model, so comparing with the observational data (212), it can be seen than

concordance can be achieved. Note that we chose N = 55, since in the case at hand, inflation ends earlier than

in the ordinary R2 inflation model.
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Scenario I

The differences of the singular inflation compared to the R2 inflation model is that inflation ends earlier than the

R2 inflation model, and also, inflation ends abruptly, since the Hubble flow parameter ε4 severely diverges. A

last comment is in order: Note that, since this result we obtained for this scenario, holds for cosmic times in the

vicinity of the singularity, so near t ∼ ts , hence it is valid only near the singularity. In principle, the singularity

can be chosen arbitrarily, but then the e-folding number should be appropriately changed. In order to obtain

N ' 50 − 60, we assume that ts is near the cosmic time tf . The most important feature of this cosmological

scenario is that inflation ends abruptly, compared to the ordinary R2 inflation model, and in fact it ends before

the first Hubble slow-roll parameter becomes of order ∼ 1. Recall that the first Hubble slow-roll parameter

corresponds to first order in the slow-roll approximation, so in the present scenario, inflation ends at a higher

order in the slow-roll expansion. We need to note that in this case, the singularity will not have any observational

implications, since the indices are the same as in the R2 inflation case, with different N, Hi and M of course.

The only new feature that this scenario brings along is that inflation seems to end earlier and more abruptly.
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

SDO and V.K. Oikonomou,Class.Quant.Grav. 33 (2016) no.12, 125029
DOI: 10.1088/0264-9381/33/12/125029.
In this section we present in some detail a preliminary cosmological model which describes in a unified way
early-time acceleration compatible with observations, late-time acceleration and the matter domination era. In a
later section we shall present a variant of this model which describes all the evolution eras of the Universe, but
still the qualitative features of both the models are the same. However, we first study the preliminary simplified
model, because it is more easy to see the qualitative behavior of the various physical quantities.
The preliminary model has two Type IV singularities as we now demonstrate, with the first occurring at the
end of the inflationary era, while the second is assumed to occur at the end of the matter domination era. The
chronology of the Universe will assumed to be as follows: The inflationary era is assumed to start at t ' 10−35sec
and is assumed to end at t ' 10−15sec. After that, the matter domination era occurs, and it is assumed to end
at t ' 1017sec, and after that, the late-time acceleration era occurs. Note that the absence of the radiation era
renders the cosmological model just a toy model, but as we mentioned earlier, later on we shall present a variant
form of this model which also consistently describes the radiation domination era, in addition to all the other
three eras. But the qualitative features of the two models are the same, so we first study this preliminary model
for simplicity. So the transition from a decelerated expansion, to an accelerated expansion is assumed to occur
nearly at t ' 1017sec. The Hubble rate of the model is equal to,

H(t) = e
−(t−ts )γ

(
H0

2
− Hi (t − ti )

)
+ f0|t − t0|δ|t − ts |γ +

2

3
(

4
3H0

+ t
) , (219)

and the values of the freely chosen parameters ts , H0, t0, γ, δ, Hi , f0 and ti , will be determined shortly.

For convenience, we shall refer to the cosmological model described by the Hubble rate of Eq. (219), as

the “unification model”. Before specifying the values of the parameters, it is worth discussing the finite-time

singularity structure of the unification model (219), which will determine the values of the parameters γ and δ.
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

Particularly, the singularity structure is the following,

When γ, δ < −1, then two Type I singularities occurs.

When −1 < γ, δ < 0, then two Type III singularities occurs.

When 0 < γ, δ < 1, then two Type II singularities occurs.

When γ, δ > 1, then two Type IV singularities occurs.

Obviously, there are also more combinations that can be chosen, but we omit these for simplicity. For the purposes
of this article, we assume that γ, δ > 1, so two Type IV singularities occur. Also, if 1 < γ, δ < 2, it is possible
for the slow-roll indices corresponding to the inflationary era, to develop dynamical instabilities at the singularity
points. Also, the gravitational baryogenesis constraints the parameter γ to be γ > 2. For these reasons, we
assume that γ, δ > 2. Also, for consistency reasons, we assume that the parameter δ is of the following form,

δ =
2n + 1

2m
, (220)

with n, and m, being positive integers. A convenient choice we shall make for the rest of the paper is that
γ = 2.1, δ = 2.5. Lets investigate the allowed values of the rest of the parameters, and specifically that of ts , at
which the first Type IV singularity occurs. The Type IV singularity at t = ts , will be assumed to occur at the end
of the inflationary era, so ts is chosen to be ts ' 10−15sec. Furthermore the second Type IV singularity occurs
at t = t0, so at t0 is chosen to be t0 ' 1017sec. Finally, for reasons to become clear later on, the parameters f0,
H0 and Hi are chosen as follows, H0 ' 6.293× 1013sec−1, Hi ' 0.16× 1026sec−1 and f0 = 10−95sec−γ−δ−1.
In conclusion, the free parameters in the theory are chosen as follows,

γ = 2.1, δ = 2.5, t0 ' 1017
sec, ts ' 10−15

sec, H0 ' 6.293×1013
sec
−1
, Hi ' 6×1026

sec
−1
, f0 = 10−95

sec
−γ−δ−1

.
(221)
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

With choice of the parameters as in Eq. (221), the model has interesting phenomenology. Firstly let us investigate
what happens with the first term of the Hubble rate (219). Particularly, this term describes the cosmological

evolution from t ' 10−35sec up to t ' 10−15sec, and it is obvious that the exponential e−(t−ts )γ for so small

values of the cosmic time, can be approximated as e−(t−ts )γ ' 1. In addition, the second term is particularly
small during early time, since it contains positive powers of a very small cosmic time and also f0 is chosen to
be f0 = 10−95sec−γ−δ−1, so the second term can be neglected at early times. Finally, owing to the fact that
t � 4

3H0
, for 10−35 < t < 10−15sec, the third term at early times can be approximated as follows,

2

3
(

4
3H0

+ t
) ' 2

3
(

4
3H0

) =
H0

2
. (222)

By combining the above facts, it can be easily seen that the Hubble rate at early times is approximately equal
to,

H(t) ' H0 − Hi (t − ti ) , (223)

which is identical to the nearly R2 quasi-de Sitter inflationary evolution. This approximate behavior for the
Hubble rate at early times holds true for quite a long time after t ' 10−15sec, and particularly it holds true until

the exponential e−(t−ts )γ starts to take values smaller than one, which occurs approximately for t ' 10−3sec.
So for t > 10−3sec, or more accurately, after t > 1sec, the exponential term takes very small values, so the first
term of the Hubble rate (219) can be neglected. Then, for a large period of time, the cosmological evolution is
dominated by the last term solely, which is,

H(t) '
2

3
(

4
3H0

+ t
) , (224)
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

And since t > 1, and t � 4
3H0

, for H0 chosen as in Eq. (221), the Hubble rate is approximately equal to,

H(t) '
2

3t
, (225)

which exactly describes a matter dominated era, since the corresponding scale factor can be easily shown that it

behaves as a(t) ' t2/3. As we demonstrate shortly, by studying the behavior of the effective equation of state
(EoS), we will arrive to the same conclusion. So after the early-time acceleration era, the unification model of
Eq. (219) describes a matter dominated era. This era persists until the present time, with the second term of
the Hubble rate (219) dominating over the last term, only at very late times. So at late-time, the unification
model Hubble rate behaves as follows,

H(t) ' f0|t − t0|δ|t − ts |γ . (226)
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

The same picture we just described can be verified by studying the EoS of the cosmological model of Eq. (219).
Since this model will be described by F (R) gravity models, the EoS reads,

weff = −1−

2

e−(t−ts )γHi − 1

2

(
1

H0
+t

)2 − e−(t−ts )γ
(

H0
2 + Hi (t − ti )

)
(t − ts )−1+γγ


3

 1

2

(
1

H0
+t

) + e−(t−ts )γ
(

H0
2 + Hi (t − ti )

)
+ f0(t − t0)δ(t − ts )γ

2
(227)

−
2
(

f0(t − t0)δ(t − ts )−1+γγ + f0(t − t0)−1+δ(t − ts )γδ
)

3

 1

2

(
1

H0
+t

) + e−(t−ts )γ
(

H0
2 + Hi (t − ti )

)
+ f0(t − t0)δ(t − ts )γ

2
.
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A Preliminary toy-model: Cosmology Unifying Early and Late-time
Acceleration with Matter Domination Eras

Therefore, it can be easily shown that at early times, the EoS is approximately equal to,

weff ' −1−
2
(

3H0
4 + Hi

)
3(H0 + Hi (t − ti ))2

, (228)

so effectively the EoS of this form describes a nearly de Sitter acceleration, since the EoS is very close to −1,
because the parameters H0 and Hi satisfy H0,Hi � 1. After the early times, the EoS can be approximated as
follows,

weff ' −1−
2
(
− 2

3t2

)
3
(

2
3t

)2
= 0 , (229)

which describes a matter dominated era, since weff ' 0. Note that this behavior is more pronounced as the
second Type IV singularity at t = t0 is approached. Finally, at late times, the EoS is approximately equal to,

weff ' −1−
2t−1−γ−δγ

3f0
−

2t−1−γ−δδ

3f0
, (230)

which again describes a nearly de Sitter acceleration era, since f0 satisfies f0 � 1. Note that the EoS (230)

describes a nearly de Sitter but slightly turned to phantom late-time Universe, a feature which is anticipated and

partially predicted for the late-time Universe. But we need to stress that the second and third terms of the EoS

in Eq. (230), are extremely small, so the difference from the exact de Sitter case can be hardly detected, as time

grows.
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Unimodular F (R) Gravity. Formalism

The unimodular F (R) gravity formalism was developed in S. Nojiri, S.D. Odintsov, V.K. Oikonomou,
arXiv:1512.07223, arXiv:1601.04112.
The unimodular F (R) gravity approach is based on the assumption that the metric satisfies the
unimodular constraint, √

−g = 1 , (231)

In addition, we assume that the metric expressed in terms of the cosmological time t is a flat
Friedman-Robertson-Walker (FRW) of the form,

ds2 = −dt2 + a(t)2
3∑

i=1

(
dx i
)2

. (232)

The metric (232) does not satisfy the unimodular constraint (232), and in order to tackle with this
problem, we redefine the cosmological time t, to a new variable τ , as follows,

dτ = a(t)3dt , (233)

in which case, the metric of Eq. (232), becomes the “unimodular metric”,

ds2 = −a (t (τ))−6 dτ2 + a (t (τ))2
3∑

i=1

(
dx i
)2

, (234)

and hence the unimodular constraint is satisfied.
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Assuming the unimodular metric of Eq. (234), by making use of the Lagrange multiplier method,
the vacuum Jordan frame unimodular F (R) gravity action is,

S =

∫
d4x

{√
−g (F (R)− λ) + λ

}
, (235)

with F (R) being a suitably differentiable function of the Ricci scalar R, and λ stands for the
Lagrange multiplier function. Note that we assumed that no matter fluids are present and also
if we vary the action (235) with respect to the function λ, we obtain the unimodular constraint
(231). In the metric formalism, the action is varied with respect to the metric, so by doing the
variation, we obtain the following equations of motion,

0 =
1

2
gµν (F (R)− λ)− RµνF ′(R) +∇µ∇νF ′(R)− gµν∇2F ′(R) . (236)

By using the metric of Eq. (234), the non-vanishing components of the Levi-Civita connection in
terms of the scale factor a(τ) and of the generalized Hubble rate K(τ) = 1

a
da
dτ

, are given below,

Γτττ = −3K , Γt
ij = a8Kδij , Γi

jt = Γi
τ j = Kδ i

j . (237)

The non-zero components of the Ricci tensor are,

Rττ = −3K̇ − 12K 2 , Rij = a8
(

K̇ + 6K 2
)
δij . (238)

while the Ricci scalar R is the following,

R = a6
(

6K̇ + 30K 2
)
. (239)
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The corresponding equations of motion become,

0 =−
a−6

2
(F (R)− λ) +

(
3K̇ + 12K 2

)
F ′(R)− 3K

dF ′(R)

dτ
, (240)

0 =
a−6

2
(F (R)− λ)−

(
K̇ + 6K 2

)
F ′(R) + 5K

dF ′(R)

dτ
+

d2F ′(R)

dτ2
, (241)

with the “prime” and “dot” denoting as usual differentiation with respect to the Ricci scalar and τ
respectively. Equations (240) and (241) can be further combined to yield the following equation,

0 =
(

2K̇ + 6K 2
)

F ′(R) + 2K
dF ′(R)

dτ
+

d2F ′(R)

dτ2
+

a−6

2
. (242)

Basically, the reconstruction method for the vacuum unimodular F (R) gravity is based on Eq. (242),
which when it is solved it yields the function F ′ = F ′(τ). Correspondingly, by using Eq. (239), we
can obtain the function R = R(τ), when this is possible so by substituting back to F ′ = F ′(τ) we
obtain the function F ′(R) = F ′ (τ (R)). Finally, the function λ(τ) can be found by using Eq. (240),
and substituting the solution of the differential equation (242). Based on the reconstruction method
we just presented, we demonstrate how some important bouncing cosmologies can be realized.
Note that the bouncing cosmologies shall be assumed to be functions of the cosmological time t,
so effectively this means that the bounce occurs in the t-dependent FRW metric of Eq. (232).

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 85 / 133



Inflation from Unimodular F (R)-gravity

A quite convenient way of studying general F (R) theories of gravity, which enables us to reveal
the slow-roll inflation evolution of a specific cosmological evolution, is by treating the F (R) gravity
cosmological system as a perfect fluid. This approach was developed in K. Bamba, S. Nojiri,
S. D. Odintsov and D. Saez-Gomez, Phys. Rev. D 90 (2014) 124061, and as was evinced, the
slow-roll indices and the corresponding observational indices receive quite convenient form, and the
study of the inflationary evolution is simplified to a great extent.
The slow-roll indices and the corresponding inflationary indices can be expressed in terms of the
Hubble rate H(N) as follows (N is the e-folding number, a/a0 = eN ),

ε =−
H(N)

4H′(N)

6 H′(N)
H(N)

+ H′′(N)
H(N)

+
(

H′(N)
H(N)

)2

3 + H′(N)
H(N)


2

,

η =−
1

2

(
9 H′(N)

H(N)
+ 3 H′′(N)

H(N)
+ 1

2

(
H′(N)
H(N)

)2
− 1

2

(
H′′(N)
H′(N)

)2
+ 3 H′′(N)

H′(N)
+ H′′′(N)

H′(N)

)
(

3 + H′(N)
H(N)

) ,

ξ2 =
6 H′(N)

H(N)
+ H′′(N)

H(N)
+
(

H′(N)
H(N)

)2

4
(

3 + H′(N)
H(N)

)2

(
3

H(N)H′′′(N)

H′(N)2
+ 9

H′(N)

H(N)
− 2

H(N)H′′(N)H′′′(N)

H′(N)3
+ 4

H′′(N)

H(N)

+
H(N)H′′(N)3

H′(N)4
+ 5

H′′′(N)

H′(N)
− 3

H(N)H′′(N)2

H′(N)3
−
(

H′′(N)

H′(N)

)2

+ 15
H′′(N)

H′(N)
+

H(N)H′′′′(N)

H′(N)2

)
.

(243)
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Consider the case in which, f0 = 1
3

, which corresponds to the de Sitter spacetime, because we are
now interested in the slow-roll inflation regime. Then, we find,

H ≡
1

a

da

dt
=

1

a

dτ

dt

da

dτ
= a2 da

dτ
= H0 + 3H0

(
b(τ) + τ

db(τ)

dτ

)
, (244)

where the parameter H0 satisfies H0 ≡ 1
3τ0

. Consequently, owing to the fact that dN
dτ

= K , we find,

H′(N) =9H0

(
2τ

db(τ)

dτ
+ τ2 d2b(τ)

dτ2

)
, H′′(N) = 27H0

(
2τ

db(τ)

dτ
+ 4τ2 d2b(τ)

dτ2
+ τ3 d3b(τ)

dτ3

)
,

H′′′(N) =81H0

(
2τ

db(τ)

dτ
+ 10τ2 d2b(τ)

dτ2
+ 7τ3 d3b(τ)

dτ3
+ τ4 d4b(τ)

dτ4

)
,

H′′′′(N) =243H0

(
2τ

db(τ)

dτ
+ 22τ2 d2b(τ)

dτ2
+ 31τ3 d3b(τ)

dτ3
+ 11τ4 d4b(τ)

dτ4
+ τ5 d5b(τ)

dτ5

)
,

(245)

and therefore, the corresponding slow-roll indices read,

ε =
81τ

(
4 db(τ)

dτ
+ 4τ d2b(τ)

dτ2 + τ2 d3b(τ)

dτ3

)2

4
(

2 db(τ)
dτ

+ τ
d2b(τ)

dτ2

) ,

η =
3

4

2 db(τ)
dτ

+ 4τ d2b(τ)

dτ2 + τ2 d3b(τ)

dτ3

2 db(τ)
dτ

+ τ
d2b(τ)

dτ2

2

−
3
(

4 db(τ)
dτ

+ 14τ d2b(τ)

dτ2 + 8τ2 d3b(τ)

dτ3 + τ3 d4b(τ)

dτ4

)
2
(

2 db(τ)
dτ

+ τ
d2b(τ)

dτ2

) .

(246)
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In the perfect fluid approach the spectral index of primordial curvature perturbations ns and the
scalar-to-tensor ratio r can be expressed in terms of the slow-roll parameters as follows,

ns ' 1− 6ε+ 2η , r = 16ε . (247)

We need to stress that the approximations for the observational indices ns and r , remain valid if
for a wide range of values of the e-foldings number N, the slow-roll indices satisfy ε, η � 1.
Recall that the recent Planck data indicate that the spectral index ns and the scalar-to-tensor ratio,
are constrained as follows,

ns = 0.9644± 0.0049 , r < 0.10 , (248)

while the most recent BICEP2/Keck-Array data further constrain r to be r < 0.07.
Consider the cosmological evolution with the following Hubble rate as a function of the e-folding
number,

H(N) =
(
−γ eδN + ζ

)b
. (249)

Substituting the Hubble rate (249) in the slow-roll parameters (243), these become,

ε =−
beδNγδ

(
ζ(6 + δ)− 2eδNγ(3 + bδ)

)2

4G(N)
(250)

η =−
δ
(
8b2e2δNγ2δ + ζ

(
2eδNγ(−3 + δ) + ζ(6 + δ)

)
+ 2beδNγ

(
12eδNγ − ζ(12 + 5δ)

))
4
(
eδNγ − ζ

) (
−3ζ + eδNγ(3 + bδ)

) ,

(251)

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 88 / 133



where we introduced the function G(N), which is equal to,

G(N) =
(
eδNγ − ζ

)(
−3ζ + eδNγ(3 + bδ)

)2
. (252)

Having at hand Eqs. (250) and (251), the calculation of the observational indices can easily be
done, and the spectral index ns reads,

ns =
2
(
eN
)3δ

γ3(3 + bδ)2(1 + 2bδ) + 3ζ3
(
−6 + 6δ + δ2

)
2G(N)

+
eδNγζ2

(
54 + 12(−3 + 4b)δ + 3δ2 + 2bδ3

)
2G(N)

−
2e2δNγ2ζ

(
27 + (−9 + 48b)δ +

(
3 + 13b2

)
δ2 + b(1 + b)δ3

)
2G(N)

, (253)

while the scalar-to-tensor ratio r has the following form,

r = −
4beδNγδ

(
ζ(6 + δ)− 2eδNγ(3 + bδ)

)2

G(N)
. (254)

Concordance with observations can be achieved if we appropriately choose the parameters γ, ζ, δ,
and b, so by making the following choice,

γ = 0.5 , ζ = 10 , δ =
1

48
, b = 1 , (255)

the observational indices ns and r , take the following values,

ns ' 0.965735 , r = 0.0554765 , (256)

which are compatible with both the latest Planck data and the latest BICEP2/Keck-Array data.
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The unimodular F (R) gravity which generates the cosmological evolution (249) is found to be,

F ′(R) =

(
c2 cos

(
1

764

√
45887 ln

(
R

68832A8
1

))
+ c1 sin

(
1

764

√
45887 ln

(
R

68832A8
1

)))
(

R
A8

1

)95/764

×
(

2475/764395/38223995/764
)
. (257)

Note that in such models of unimodular F (R) gravity, graceful exit from inflation may be achieved
either via the contribution of R2 correction terms, or via a Type IV singularity, in which case singular
inflation might occur.
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Alternatives: bounces in F(R) gravity. The F (R) Gravity Reconstruction
Method

We now investigate which vacuum F (R) gravity can generate an arbitrary cosmological evolution
described by a given Hubble rate.
The action of a vacuum Jordan frame F (R) gravity is equal to,

S =
1

2κ2

∫
d4x
√
−gF (R) , (258)

and by adopting the metric formalism, we vary the action of Eq. (258) with respect to the metric
gµν , so we obtain the following Friedmann equation,

− 18
[
4H(t)2Ḣ(t) + H(t)Ḧ(t)

]
F ′′(R) + 3

[
H2(t) + Ḣ(t)

]
F ′(R)−

F (R)

2
= 0 . (259)

The reconstruction method we shall adopt, makes use of an auxiliary scalar field φ, so the F (R)
gravity of Eq. (258) can be written in the following equivalent form,

S =

∫
d4x
√
−g [P(φ)R + Q(φ)] . (260)

Note that the auxiliary field has no kinetic form so it is a non-dynamical degree of freedom. The
reconstruction method we employ is based on finding the analytic dependence of the functions
P(φ) and Q(φ) on the Ricci scalar R, which can be done if we find the function φ(R). In order to
find the latter, we vary the action of Eq. (260) with respect to φ, so we end up to the following
equation,

P′(φ)R + Q′(φ) = 0 , (261)

where the prime in this case indicates the derivative of the corresponding function with respect to
the auxiliary scalar field φ.
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Then by solving the algebraic equation (261) as a function of φ, we easily obtain the function φ(R).
Correspondingly, by substituting this to Eq. (260) we can obtain the F (R) gravity, which is of the
following form,

F (φ(R)) = P(φ(R))R + Q(φ(R)) . (262)

Essentially, finding the analytic form of the functions P(φ) and Q(φ), is the aim of the reconstruc-
tion method. These can be found by varying the action of Eq. (260) with respect to the metric
tensor gµν , and the resulting expression is,

− 6H2P(φ(t))− Q(φ(t))− 6H
dP (φ(t))

dt
= 0 ,(

4Ḣ + 6H2
)

P(φ(t)) + Q(φ(t)) + 2
d2P(φ(t))

dt2
+

dP(φ(t))

dt
= 0 . (263)

By eliminating the function Q(φ(t)) from Eq. (263), we obtain,

2
d2P(φ(t))

dt2
− 2H(t)

dP(φ(t))

dt
+ 4ḢP(φ(t)) = 0 . (264)

Hence, for a given cosmological evolution with Hubble rate H(t), by solving the differential equation
(264), we can have the analytic form of the function P(φ) at hand, and from this we can easily find
Q(t), by using the first relation of Eq. (263). Note that, since the action of the F (R) gravity (258)
with the action (260) are mathematically equivalent, the auxiliary scalar field can be identified with
the cosmic time t, that is φ = t.
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Essentials of Bouncing Cosmologies

A bounce cosmology is described by two eras of evolution, the contraction and expansion eras,
and in between is the bouncing point, at which the Universe bounces off. During the contraction
era, the scale factor of the Universe decreases, so the scale factor satisfies ȧ < 0. The Universe
continues to contract until it reaches a minimal radius, at a time instance t = ts , where it bounces
off and the scale factor satisfies ȧ = 0. This minimal radius point is the bouncing point, and
it is exactly due to this minimal size that the Universe avoids the initial singularity. After the
bouncing point, the Universe starts to expand, and hence the scale factor satisfies ȧ > 0. During
the contraction era, that is, when t < ts , the Hubble rate satisfies H(t) < 0, until the bouncing
point, at which H(ts ) = 0, and after the bouncing point and during the expansion era, the Hubble
rate satisfies, H(t) > 0. Hence the bounce cosmology conditions are the following,

Before the bouncing point t < ts : ȧ(t) < 0, H(t) < 0 ,

At the bouncing point t = ts : ȧ(t) = 0, H(t) = 0 ,

After the bouncing point t > ts : ȧ(t) > 0, H(t) > 0 , (265)

where we assumed that the bouncing point is at t = ts .
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Examples of Bounces and F (R) Reconstruction

Consider the following bounce cosmology, studied in Odintsov and Oikonomou, Phys.Rev. D91
(2015) 6, 064036, Oikonomou Astrophys.Space Sci. 359 (2015) 1, 30.
The scale factor and the Hubble rate for the superbounce are given below,

a(t) = (−t + ts )
2

c2 , H(t) = −
2

c2(−t + ts )
, (266)

with c being an arbitrary parameter of the theory while the bounce in this case occurs at t = ts .
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Figure: The scale factor a(t) (left plot) and the Hubble rate (right plot) as a function of the cosmological time

t, for the superbounce scenario a(t) = (−t + ts )
2

c2 .

In the figure, we have plotted the time dependence of the scale factor and of the Hubble rate for
the superbounce case.
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It can be seen that in this case too, the bounce cosmology conditions (265) are satisfied, and in
addition, the scale factor decreases for t < 0 and increases for t > 0, as in every bounce cosmology,
so contraction and expansion occurs. In addition, the physics of the cosmological perturbations are
the same to the matter bounce case, since the Hubble radius decreases for t < 0 and increases for
t > 0, so the correct description for the superbounce is the following: Initially, the Universe starts
with an infinite Hubble radius, at t → −∞, so the primordial modes are at subhorizon scales at
that time. Gradually, the Hubble horizon decreases and consequently the modes exit the horizon
and possibly freeze. Eventually, after the bouncing point, the Hubble horizon increases again, so
it is possible for the primordial modes to reenter the horizon. Hence this model can harbor a
conceptually complete phenomenology. The behavior of the Hubble horizon as a function of the
cosmological time can be found in Fig. 3
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Figure: The Hubble radius RH (t) as a function of the cosmological time t, for the superbounce scenario

a(t) = (−t + ts )
2

c2 .

S. D. Odintsov (ICE-IEEC/CSIC) Unifying the Early-time Inflation with Late-time Dark Energy epoch 95 / 133



The F (R) Gravity that generates this cosmology is found to be Odintsov and Oikonomou, Phys.Rev.
D91 (2015) 6, 064036, Oikonomou Astrophys.Space Sci. 359 (2015) 1, 30,

F (R) = c1Rρ1 + c2Rρ2 , (267)

where c1, c2 are arbitrary parameters, and ρ1 and ρ2 are equal to,

ρ1 =
−(a2 − a1) +

√
(a2 − a1)2 + 2a1

2a1

ρ2 =
−(a2 − a1)−

√
(a2 − a1)2 + 2a1

2a1
. (268)

and also

a1 =
c2

4− c2

a2 =
2− c2

2(4− c2)
. (269)
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In the Singular Bounce (Odintsov and Oikonomou Phys.Rev. D92 (2015) 2, 024016 and arXiv:1512.04787,
Oikonomou Phys.Rev. D92 (2015) 12, 124027),

a(t) = e
f0
α+1

(t−ts )α+1

, H(t) = f0 (t − ts )α , (270)

with f0 an arbitrary positive real number, and ts is the time instance at which the bounce occurs
and also coincides with the time that the singularity occurs. In order for a Type IV singularity to
occur, the parameter α has to satisfy α > 1. In addition, in order for the singular bounce to obey
the bounce cosmology conditions, the parameter α has to be chosen in the following way,

α =
2n + 1

2m + 1
, (271)

with n and m integers chosen so that α > 1. For example, for α = 5
3

, the time dependence of the
scale factor and of the Hubble rate are given in Fig. 4, and as it can be seen, the bounce conditions
are satisfied, and in this case, contraction and expansion occurs.
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Figure: The scale factor a(t) (left plot) and the Hubble rate (right plot) as a function of the cosmological time

t, for the singular bounce scenario a(t) = e
f0
α+1

(t−ts )α+1
.

The singular bounce however, in contrast to the previous two cases, generates a peculiar Hubble
radius behavior, as we now evince. In order to make this clear, in Fig. 5 we plotted the Hubble
radius as a function of time. As it can be seen, the behavior of the Hubble radius is different in
comparison to the previous two cases. Particularly, at t → −∞, the Hubble radius is infinite, and
gradually decreases until a minimal size, but near the bouncing point it increases and blows up at
exactly the bouncing point. Eventually, after the bouncing point it decreases gradually. Therefore
in the singular bounce case, two possible scenarios can be described:

Scenario I: The physical evolution starts near the bouncing point with an infinite Hubble
radius. So the primordial modes are at subhorizon scales at that point, so after t > ts , the
Hubble horizon decreases and subsequently, the primordial modes will exit the horizon. This
scenario was studied in detail in Odintsov and Oikonomou, arXiv:1512.04787 and as was
demonstrated, a non-scale invariant power spectrum is generated, if the primordial modes are
near the Type IV singularity, which is simultaneously, the bouncing point.
Scenario II: In this case, the Universe starts its evolution at t → −∞, and all the primordial
modes are contained within the horizon. The horizon decreases, so the primordial modes
eventually exit the horizon, until near the bouncing point (or equivalently, near the Type IV
singularity), the Hubble horizon starts to grow rapidly, so the modes reenter the horizon, and
therefore become relevant for present time observations. Obviously present time corresponds
to a time after the bouncing point. This scenario is interesting and peculiar, and we shall
address it in detail in a future work.
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Figure: The Hubble radius RH (t) as a function of the cosmological time t, for the singular bounce scenario
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The F (R) gravity that generates the bounce, near the Type IV singularity is Odintsov and Oikonomou
Phys.Rev. D92 (2015) 2, 024016, Oikonomou Phys.Rev. D92 (2015) 12, 124027, Odintsov and
Oikonomou, arXiv:1512.04787,

F (R) ' −
A2

C
R2 − 2

BA
C

R −
B2

C
+ C . (272)

and the parameters A, B and C depend on the free parameters of the theory, see Odintsov and
Oikonomou Phys.Rev. D92 (2015) 2, 024016, Oikonomou Phys.Rev. D92 (2015) 12, 124027,
Odintsov and Oikonomou, arXiv:1512.04787.
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Unifying trace-anomaly driven inflation with cosmic acceleration in modified
gravity. Bamba, Myrzakulov, Odintsov, Sebastiani, arXiv:1403.6649.

Trace anomaly reads (Duff 1994,Buchbinder-Odintsov-Shapiro 1992))

〈Tµµ 〉 = α

(
W +

2

3
�R

)
− βG + ξ�R , (273)

where W = CξσµνCξσµν is the “square” of the Weyl tensor Cξσµν and G the Gauss-Bonnet topological
invariant, given by

W = RξσµνRξσµν − 2RµνRµν +
1

3
R2
, G = RξσµνRξσµν − 4RµνRµν + R2

, (274)

The dimensionfull coefficients α, β, and ξ of the above expression are related to the number of conformal fields
present in the theory. We introduce real scalar fields NS, the Dirac (fermion) fields NF, vector fields NV, gravitons
N2(= 0 , 1), and higher-derivative conformal scalars NHD. Then

α =
NS + 6NF + 12NV + 611N2 − 8NHD

120(4π)2
, β =

NS + 11NF + 62NV + 1411N2 − 28NHD

360(4π)2
, (275)

If we exclude the contribution of gravitons and higher-derivative conformal scalars, we get

α =
1

120(4π)2
(NS + 6NF + 12NV) , β =

1

360(4π)2
(NS + 11NF + 62NV) , ξ = −

NV

6(4π)2
, (276)

For Nsuper = 4 SU(N) super Yang-Mills (SYM) theory, we have NS = 6N2, NF = 2N2, and NV = N2, where
N is a very large number. Therefore, we obtain a relation among the numbers of scalars, spinors and vector
fields.

α = β =
N2

64π2
, ξ = −

N2

96π2
. (277)
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Unifying trace-anomaly driven inflation with cosmic acceleration in modified
gravity

Note that
2

3
α + ξ = 0 , (278)

and in principle the contribution of the �R term to the conformal anomaly vanishes, but it could be reintroduced
via a higher curvature term in the action (see below). Owing to the conformal anomaly, the classical Einstein
equation is corrected as

Rµν −
1

2
gµν R = κ

2〈Tµν〉 . (279)

By taking the trace of the last equation (279), we derive

R = −κ2〈Tµµ 〉 ≡ −κ
2
[
α

(
W +

2

3
�R

)
− βG + ξ�R

]
. (280)

Despite the fact that in Eq. (278), the coefficient of the �R term is equal to zero, we can set it to any desired

value by adding the finite R2 counter term in the action. In the classical Einstein gravity, this additional term is
necessary to exit from inflation (Starobinsky 1980). Concretely, by adding the following action

I =
γN2

192π2

∫
M

d4x
√
−g R2

, γ > 0 , (281)

Eq. (279) becomes (Dowker-Critchley 1976,Fishetti-Hartle-Hu 1979,Mamaev-Mostepanenko 1980, Starobinsky
1980)

Rµν −
1

2
gµν R = −

γN2κ2

48π2
RRµν +

γN2κ2

192π2
R2gµν +

γN2κ2

48π2
∇µ∇νR −

γN2κ2

48π2
gµν�R2 + κ

2〈Tµν〉 . (282)
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Account of F(R) gravity

The action is given by

I =
1

2κ2

∫
M

d4x
√
−g

[
R + 2κ2

γ̃R2 + f (R) + 2κ2LQC

]
, γ̃ ≡

γN2

192π2
, (283)

where we have considered the R2 term in the action with γ̃ as in (281) and we have added a correction given by
a function f (R) of the Ricci scalar. The field equations are

Gµν ≡ Rµν −
1

2
gµνR = κ

2〈Tµν〉 − 4γ̃κ2RRµν + γ̃R2
κ

2gµν + 4γ̃κ2∇µ∇νR − 4γ̃κ2gµν�R2

−fR (R)

(
Rµν −

1

2
Rgµν

)
+

1

2
gµν [f (R)− RfR (R)] + (∇µ∇ν − gµν�)fR (R) , (284)

The trace is described as

R = −κ2 (αW − βG + δ�R)− 2f (R) + RfR (R) + 3�fR (R) , (285)

where we have imposed the condition in Eq. (278) and introduced δ defined as

δ ≡ −12γ̃ = −
γN2

16π2
, δ < 0 . (286)

Here, γ(> 0) is a free parameter. The flat FLRW space-time

ds2 = −dt2 + a2(t)
(

dx2 + dy 2 + dz2
)
, (287)

The energy density ρ and pressure p of quantum corrections are represented as

〈T00〉 = ρ , 〈Tij〉 = p a(t)2
δij , (i, j = 1, 2, 3) . (288)
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Account of F(R) gravity

In the FLRW background, it follows from (µ, ν) = (0, 0) component and the trace part of (µ, ν) = (i, j) of
Eq. (284), we obtain the equations of motion

3

κ2
H2 = ρ +

1

2κ2

[
RfR (R)− f (R)− 6H2fR (R)− 6HḟR (R)

]
≡ ρeff , (289)

−
1

κ2

(
2Ḣ + 3H2

)
= p +

1

2κ2

[
−RfR (R) + f (R) + (4Ḣ + 6H2)fR (R) + 4HḟR (R) + 2f̈R (R)

]
≡ peff . (290)

In these equations, ρeff and peff are the effective energy density and pressure of the universe. The effective
conservation law

ρ̇eff + 3H (ρeff + peff) = 0 . (291)

The effective energy density is

ρeff =
ρ0

a4
+ 6βH4 + δ

(
18H2Ḣ + 6ḦH − 3Ḣ2

)
+

1

2κ2

(
RfR (R)− f (R)− 6H2fR (R)− 6HḟR (R)

)
, (292)

where ρ0 is the constant of integration. The effective pressure is

peff =
ρ0

3a4
− β

(
6H4 + 8H2Ḣ

)
− δ

(
9Ḣ2 + 12HḦ + 2

...
H + 18H2Ḣ

)
+

1

2κ2

[
−RfR (R) + f (R) + (4Ḣ + 6H2)fR (R) + 4HḟR (R) + 2f̈R (R)

]
. (293)

In the expressions of ρeff in Eq. (292) and peff in Eq. (293), we can recognize the contributions from not only

modified gravity but also quantum corrections. .
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Trace-anomaly driven inflation in exponential gravity

Exponential f (R) (Cognola-Elizalde-Nojiri-Odintsov-Zerbini 2007)

f (R) = −2Λeff

[
1− exp

(
−

R

R0

)]
. (294)

Indistinguishable from LCDM.
de Sitter solutions:

H2
dS± =

1

4βκ2

(
1±

√
1−

8ζ

3

)
=

2πM2
Pl

N2

(
1±

√
1−

8ζ

3

)
,

Λeff =
ζ

βκ2
= ζ

[
8πM2

Pl

N2

]
, 0 < ζ <

3

8
. (295)

There are two special solutions

H2
dS =

1

2βκ2
=

4πM2
Pl

N2
, Λeff = 0 , (296)

H2
dS =

1

4βκ2
=

2πM2
Pl

N2
, Λeff =

3

8βκ2
=

3

8

(
8πM2

Pl

N2

)
. (297)

Stability of the de Sitter solutions We define the perturbations ∆H(t) as

H = HdS± + ∆H(t) , |∆H(t)| � 1 . (298)

The solution is given by

∆H(t) = A0eλ1,2t
, λ1,2 =

−3HdS± ±
√

9H2
dS± + 4

δ

(
1
κ2 − 4H2

dS±β
)

2
, (299)

where A0 is a constant.
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Trace-anomaly driven inflation in exponential gravity

The de Sitter solutions of the model (294) are unstable (and adopted to describe the inflation) only if λ1 (the
eigenvalue with the positive sign in front of the square root) is real and positive, i.e.,

4β −
1

κ2H2
dS±

> 0 , 9H2
dS± +

4

δ

(
1

κ2
− 4H2

dS±β

)
> 0 . (300)

Here, we have taken into account the fact that β > 0 and δ < 0.
Dynamics of inflation
Given the unstable de Sitter solution H2

dS± in , to analyze inflation occurring in the model in Eq. (294), we have

to calculate the amplitude of the perturbations in Eq. (299).
At the time t = 0 when inflation starts, we have to set ∆H(t = 0) = 0. The complete solution of this equation
is given by the homogeneous part in Eq. (299) plus the contribute of modified gravity as follows

∆H(t) = A0eλ1,2t −
e−RdS/R0 Λeff

12HdSκ2

(
RdS

R0
+ 2

)(
1

κ2
− 4H2

dSβ

)−1

. (301)

Thus, at t = 0, by putting ∆H(t = 0) = 0, we can estimate the amplitude A0 as

A0 = −
e−RdS/R0ζ

12HdS(βκ2)

(
RdS

R0
+ 2

)(
1−

8

3
ζ

)−1/2

< 0 . (302)

Here, we have considered only the unstable solution HdS ≡ HdS+ in Eq. (295).
The time at the end of inflation

tf '
RdS

R0 λ1
. (303)

The number of e-folds N is

N = ln

(
af

ai

)
, (304)

and inflation is viable if N > 76.
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Trace-anomaly driven inflation in exponential gravity

For the model (294), by taking account of the fact that we have chosen ti = 0 and using Eq. (303), we acquire

N ≡ HdStf =
2RdS

3R0

−1 +

√√√√√√1−
16β

9δ


√

1− 8
3 ζ

1 +
√

1− 8
3 ζ



−1

. (305)

By combining this relation, the expressions for β in Eq. (277) and δ in Eq. (286), and Eq. (305), we have

N =
2b

3

−1 +

√√√√√√1 +
4

9γ


√

1− 8
3 ζ

1 +
√

1− 8
3 ζ



−1

. (306)

Spectral index
The second time derivative of a(t) is

ä

a
= H2 + Ḣ = H2 (1− ε) , (307)

with the parameter ε. When the approximate de Sitter solution is realized, it has to be very small as

ε = −
Ḣ

H2
� 1 . (308)

Moreover, ε has to change very slowly. There is another parameter η, which has to also be very small as

|η| =

∣∣∣∣∣− Ḧ

2HḢ

∣∣∣∣∣ ≡
∣∣∣∣ε− 1

2εH
ε̇

∣∣∣∣� 1 . (309)

These two parameters are the so-called slow-roll parameters.
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Trace-anomaly driven inflation in exponential gravity

The amplitude of scalar-mode power spectrum of the primordial curvature perturbations at k = 0.002 Mpc−1 is
described as

∆2
R =

κ2H2

8π2ε
, (310)

and the last cosmological data constrain the spectral index ns and the tensor-to-scalar ratio r are given by
(Mukhanov:1981),

ns = 1− 6ε + 2η , r = 16ε . (311)

In the model (294), we find

∆2
R =

1

32π2βε

(
1 +

√
1−

8

3
ζ

)
=

2

N2ε

(
1 +

√
1−

8

3
ζ

)
, (312)

The parameters ε and η read

ε ' −
∆Ḣ(t)

H2
dS

=
b2

N 2

(
−
δ

4β

)
e(λ1t−b)ζ (b + 2)(

1− 8
3 ζ
) (

b

3N
+ 1

)
=

b2

N 2

e(λ1t−b)ζ (b + 2)(
1− 8

3 ζ
) (

b

3N
+ 1

)
,

η = ε−
ε̇

2εHdS

= ε−
λ1

2HdS

= ε−
b

2N
. (313)

During inflation, when t � tf , since N � 1, we have

ε '
b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) � 1 , |η| '

∣∣∣∣− b

2N

∣∣∣∣� 1 . (314)

Thus, the spectral index and the tensor-to-scalar ratio in Eq. (311) for the model (294) are derived as

ns = 1−
b

N
−

6b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) , r =

16b2

N 2

e−bζ (b + 2)(
1− 8

3 ζ
) . (315)
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Trace-anomaly driven inflation in exponential gravity

We mention the recent observations of the spectral index ns as well as the tensor-to-scalar ratio r . The results
observed by the Planck satellite are ns = 0.9603± 0.0073 (68% CL) and r < 0.11 (95% CL). Since b/N � 1
and 1 � b, the constraints from the Planck satellite described above can be satisfied. For instance, for b = 3,
ζ = 1/8, and N = 76, we have ns ' 0.9601 and r = 1.20× 10−3.
On the other hand, the BICEP2 experiment has detected the B-mode polarization of the cosmic microwave
background (CMB) radiation with the tensor to scalar ratio r = 0.20+0.07

−0.05 (68% CL), and also the case that r
vanishes has been rejected at 7.0σ level.
For our model, even if the dependence of the tensor-to-scalar ratio on N 2 makes it very small, we can play with
a value of ζ close to 3/8 in order to increase its value. For instance, with the choice ζ = 0.37125, we can still
describe the unstable de Sitter solution for b > 1, since RdS � R0 and f (RdS) ' −2Λeff. Thus, the number of
e-folds N depends on γ only as in Eq. (306). Indeed, when we take the combination of the values of b and γ,
e.g., (b = 2, γ > 1.14), (b = 3, γ > 0.76), and (b = 4, γ > 0.57), and so on, we obtain N > 76.
For example, if N = 76, for b = 2, 3 and 4, we acquire r = 0.22, 0.23, and 0.18, respectively.

Thus, unification of realistic inflation with viable dark energy era occurs in exponential F(R) gravity with account

of quantum effects (trace anomaly). This is in full accord with first discovery of such unification proposed in

Nojiri-Odintsov2003.
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Anti-evaporation of SdS BHs in F(R) theory
L.Sebastiani, D. Momeni, R.Myrzakulov, S.D.Odintsov, arXiv:1305.4231

Nariai metric in the cosmological patch with R0 = 4Λ and cosmological time t given by τ =
arccos [cosh t]−1 reads

ds2 = −
1

Λ cos2 τ

(
−dτ2 + dx2

)
+

1

Λ
dΩ2 , (316)

−π/2 < τ < π/2. F (R)-gravity admits such a metric as the limiting case of the Schwarzshild-de
Sitter solution under the condition

2F (R0) = R0FR (R0) . (317)

Perturbations around the Nariai space-time are described by

ds2 = e2ρ(x,τ)
(
−dτ2 + dx2

)
+ e−2ϕ(x,τ)dΩ2 , ρ = − ln

[√
Λ cos τ

]
+ δρ , ϕ = ln

√
Λ + δϕ .

(318)
From the field equations of F (R)-gravity one finds

1

α cos2 τ
[2(2α− 1)δϕ]− 3δϕ̈+ 3δϕ′′ = 0 , α =

2ΛFRR (R0)

F ′(R0)
, (319)

and

δR ≡ 4Λ (−δρ+ δϕ) + Λ cos2 τ
(
2δρ̈− 2δρ′′ − 4δϕ̈+ 4δϕ′′

)
= 2

FR (R0)

FRR (R0)
δϕ . (320)

Equation (319) can be used to study the evolution of ϕ(τ, x). In principle, one may insert the
result in (320) in order to obtain ρ(τ, x). However, the radius of the Nariai black hole depends on
ϕ(τ, x) only, so that we will limit our analysis to Eq. (319).
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Anti-evaporation of SdS BHs in F(R) theory

Horizon perturbations.
The position of the horizon moves on the one-sphere S1 and it is located in the correspondence of
∇δϕ · ∇δϕ = 0. For a black hole located at x = x0, the horizon is defined as

r0(τ)−2 = e2ϕ(τ,x0) =
1 + δϕ(x0, τ)

Λ
. (321)

Therefore, evaporation/anti-evaporation correspond to increasing/decreasing values of δϕ(τ) on
the horizon.
Following [J. C. Niemeyer and R. Bousso, Phys. Rev. D 62 (2000) 023503 [gr-qc/0004004]] we can
decompose the two-sphere radius of Nariai solution into Fourier modes on the S1 sphere, namely

δϕ(x , t) = ε
+∞∑
n=1

(An(τ) cos[nx] + Bn(τ) sin[nx]) , 1� ε > 0 . (322)

Here, ε is assumed to be positive and small. From Eq. (319) we get

δϕ(x , t) = ε
∞∑

n=1

Pµν (ξ)
[
an cos(nx) + bn sin(nx)

]
, ξ = sin τ , (323)

with

µ =

√
2(2α− 1)

3α
, ν = −

1

2
±
√

n2 +
1

4
, α =

2ΛFRR (R0)

F ′(R0)
. (324)

Above, Pµν (ξ) are the Legendre polynomials regular on the boundary ξ = 0 (i.e. t = 0) and the
unknown coefficients {an, bn} can in principle be obtained by using the initial boundary conditions
at ξ = 0.
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Anti-evaporation of SdS BHs in F(R) theory

By using this formalism, we can study the stability/unstability of Nariai solutions in F (R)-gravity
for different modes of δϕ(x , t). For n = 1 one has near to ξ = 1 (i.e. t → +∞):

When µ is real

Pµν (ξ) ' (1− ξ)−
µ
2

[
2µ/2

Γ(1− µ)
−

2µ/2(µ− µ2 + 2ν(1 + ν))

4Γ(2− µ)
(1− ξ) +O(1− ξ)2

]
. (325)

This is the case of α real and 1/2 < α or α < 0, for example models like F (R) = R + γRm.
The Legendre polynomial and therefore the Nariai horizon diverge. We have anti-evaporation
(or evaporation if ε < 0 from the beginning).

When µ is complex number

P
i|µ|
ν (ξ) ' (1− ξ)−

i|µ|
2

 2
i|µ|

2

Γ(1− i |µ|)
−

2
i|µ|

2 (1− ξ)

4Γ(2− i |µ|)
(|µ|(i + |µ|) + 2ν(ν + 1)) +O(1− ξ)2)

 .
(326)

This is the case of 0 < α < 1/2, for example models like F (R) = R − 2Λ(1− eR/R∗ ). The
Legendre polynomial and therefore the Nariai horizon do not diverge. Solution is stable, we
can have only transient evaporation/antievaporation.
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Stable neutron stars from f (R) gravity
A.Astashenok,S. Capozziello and S.D. Odintsov,arXiv:1309.1978

It is convenient to write function f (R) as

f (R) = R + αh(R), (327)

The field equations are

(1 + αhR )Gµν −
1

2
α(h − hR R)gµν − α(∇µ∇ν − gµν�)hR =

8πG

c4
Tµν . (328)

Spherically symmetric metric with two independent functions of radial coordinate:

ds2 = −e2φc2dt2 + e2λdr 2 + r 2(dθ2 + sin2
θdφ2). (329)

The energy–momentum tensor Tµν = diag(e2φρc2, e2λP, r 2P, r 2 sin2 θP), where ρ is the matter density and P
is the pressure. The components of the field equations are

−8πG

c2
ρ = −r−2 + e−2λ(1− 2rλ′)r−2 + αhR (−r−2 + e−2λ(1− 2rλ′)r−2)

−
1

2
α(h − hR R) + e−2λ

α[h′R r−1(2− rλ′) + h′′R ], (330)

8πG

c4
P = −r−2 + e−2λ(1 + 2rφ′)r−2 + αhR (−r−2 + e−2λ(1 + 2rφ′)r−2)

−
1

2
α(h − hR R) + e−2λ

αh′R r−1(2 + rφ′), (331)

where prime denotes derivative with respect to radial distance, r .
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Stable neutron stars from f (R) gravity

For the exterior solution, we assume a Schwarzschild solution. For this reason, it is convenient to define the
change of variable

e−2λ = 1−
2GM

c2r
. (332)

The value of parameter M on the surface of a neutron star can be considered as a gravitational star mass. Useful
relation

GdM

c2dr
=

1

2

[
1− e−2λ(1− 2rλ′]

)
, (333)

.
The hydrostatic condition of equilibrium can be obtained from the Bianchi identities

dP

dr
= −(ρ + P/c2)

dφ

dr
, . (334)

The second TOV equation can be obtained by substitution of the derivative dφ/dr from (334) in Eq.(331). The
dimensionless variables

M = mM�, r → rg r , ρ→ ρM�/r 3
g , P → pM�c2

/r 3
g , R → R/r 2

g .

Here M� is the Sun mass and rg = GM�/c2 = 1.47473 km. Eqs. (330), (331) can be rewritten as(
1 + αr 2

g hR +
1

2
αr 2

g h′R r

)
dm

dr
= 4πρr 2 −

1

4
αr 2r 2

g

(
h − hR R − 2

(
1−

2m

r

)(
2h′R

r
+ h′′R

))
, (335)

8πp = −2
(

1 + αr 2
g hR

) m

r 3
−
(

1−
2m

r

)(
2

r
(1 + αr 2

g hR ) + αr 2
g h′R

)
(ρ + p)−1 dp

dr
− (336)

−
1

2
αr 2

g

(
h − hR R − 4

(
1−

2m

r

)
h′R
r

)
,

where ′ = d/dr .
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Stable neutron stars from f (R) gravity

For α = 0, Eqs. (335), (336) reduce to
dm

dr
= 4πρ̃r 2 (337)

dp

dr
= −

4πpr 3 + m

r(r − 2m)
(ρ̃ + p) , (338)

i.e. to ordinary dimensionless TOV equations. These equations can be solved numerically for a given EoS
p = f (ρ) and initial conditions m(0) = 0 and ρ(0) = ρc .
For non-zero α, one needs the third equation for the Ricci curvature scalar. The trace of field Eqs. (328) gives
the relation

3α�hR + αhR R − 2αh − R = −
8πG

c4
(−3P + ρc2). (339)

In dimensionless variables, we have

3αr 2
g

((
2

r
−

3m

r 2
−

dm

rdr
−
(

1−
2m

r

)
dp

(ρ + p)dr

)
d

dr
+

(
1−

2m

r

)
d2

dr 2

)
hR

+ αr 2
g hR R − 2αr 2

g h − R = −8π(ρ− 3p) . (340)

We need to add the EoS for matter inside star to the Eqs. (335), (336), (340). Standard polytropic EoS p ∼ ργ
works, although a more realistic EoS has to take into account different physical states for different regions of the
star and it is more complicated.
Perturbative solution. For a perturbative solution the density, pressure, mass and curvature can be expanded as

p = p(0) + αp(1) + ..., ρ = ρ
(0) + αρ

(1) + ..., (341)

m = m(0) + αm(1) + ..., R = R(0) + αR(1) + ...,

where functions ρ(0), p(0), m(0) and R(0) satisfy to standard TOV equations assumed at zeroth order. Terms

containing hR are assumed to be of first order in the small parameter α, so all such terms should be evaluated

at O(α) order.
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For m = m(0) + αm(1), the following equation

dm

dr
= 4πρr 2−αr 2

(
4πρ(0)hR +

1

4
(h − hR R)

)
+

1

2
α

((
2r − 3m(0) − 4πρ(0)r 3

) d

dr
+ r(r − 2m(0))

d2

dr 2

)
hR

(342)

for pressure p = p(0) + αp(1)

r − 2m

ρ + p

dp

dr
= 4πr 2p +

m

r
− αr 2

(
4πp(0)hR +

1

4
(h − hR R)

)
− α

(
r − 3m(0) + 2πp(0)r 3

) dhR

dr
. (343)

The Ricci curvature scalar, in terms containing hR and h, has to be evaluated at O(1) order, i.e.

R ≈ R(0) = 8π(ρ(0) − 3p(0)) . (344)

We can consider various EoS for the description of the behavior of nuclear matter at high densities. For example
the SLy and FPS equation have the same analytical representation:

ζ =
a1 + a2ξ + a3ξ

3

1 + a4ξ
f (a5(ξ − a6)) + (a7 + a8ξ)f (a9(a10 − ξ))+ (345)

+(a11 + a12ξ)f (a13(a14 − ξ)) + (a15 + a16ξ)f (a17(a18 − ξ)),

where

ζ = log(P/dyncm−2) , ξ = log(ρ/gcm−3) , f (x) =
1

exp(x) + 1
.

The coefficients ai for SLy and FPS EoS are different.
Neutron star with a quark core. The quark matter can be described by the very simple EoS:

pQ = a(ρ− 4B), (346)

where a is a constant and the parameter B can vary from ∼ 60 to 90 Mev/fm3.
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For quark matter with massless strange quark, it is a = 1/3. We consider a = 0.28 corresponding to ms = 250
Mev. For numerical calculations, Eq. (346) is used for ρ ≥ ρtr , where ρtr is the transition density for which the
pressure of quark matter coincides with the pressure of ordinary dense matter. For example for FPS equation,
the transition density is ρtr = 1.069 × 1015 g/cm3 (B = 80 Mev/fm3), for SLy equation ρtr = 1.029 × 1015

g/cm3 (B = 60 Mev/fm3).

Model 1.
f (R) = R + βR(exp(−R/R0)− 1), (347)

We can assume, for example, R = 0.5r−2
g . For R << R0 this model coincides with quadratic model of f (R)

gravity.
For neutron stars models with quark core, there is no significant differences with respect to General Relativity. For
a given central density, the star mass grows with α. The dependence is close to linear for ρ ∼ 1015g/cm3. For the
piecewise equation of state ( FPS case for ρ < ρtr ) the maximal mass grows with increasing α. For β = −0.25,
the maximal mass is 1.53M�, for β = 0.25, Mmax = 1.59M� (in General Relativity, it is Mmax = 1.55M�).
With an increasing β, the maximal mass is reached at lower central densities. Furthermore, for dM/dρc < 0,
there are no stable star configurations. A similar situation is observed in the SLy case but mass grows with β
more slowly.

For the simplified EoS (345), other interesting effects can occur. For β ∼ −0.15 at high central densities

(ρc ∼ 3.0− 3.5× 1015g/cm3), we have the dependence of the neutron star mass from radius and from central

density. For β < 0 for high central densities we have the stable star configurations (dM/dρc > 0).
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For example the measurement of mass of the neutron star PSR J1614-2230 with 1.97 ± 0.04 M� provides a
stringent constraint on any M − R relation. The model with SLy equation is more interesting: in the context
of model (347), the upper limit of neutron star mass is around 2M� and there is second branch of stability star
configurations at high central densities. This branch describes observational data better than the model with
SLy EoS in GR.
Possibility of a stabilization mechanism in f (R) gravity which leads to the existence of stable neutron stars which
are more compact objects than in General Relativity. Cubic model.

f (R) = R + αR2(1 + γR) . (348)

Let |γR| ∼ O(1) for large R and αR2(1 + γR) << R. For small masses, the results coincide with R2 model.

For γ = −10 (in units r 2
g ) the maximal mass of neutron star at high densities ρ > 3.7 × 1015 g/cm3 is nearly

1.88M� and radius is about ∼ 9 km (SLy equation). For γ = −20 the maximal mass is 1.94M� and radius is
about ∼ 9.2 km . In the GR, for SLy equation, the minimal radius of neutron stars is nearly 10 km. Therefore
such a model of f (R) gravity can give rise to neutron stars with smaller radii than in GR. Therefore such theory
can describe (assuming only the SLy equation), the existence of peculiar neutron stars with mass ∼ 2M� (the
measured mass of PSR J1614-2230) and compact stars (R ∼ 9 km) with masses M ∼ 1.6− 1.7M�.
For smaller values of γ the minimal neutron star mass (and minimal central density at which stable stars exist)
on second branch of stability decreases.

It is interesting to note that for negative and sufficiently large values of ε, the maximal limit of neutron star

mass can exceed the limit in General Relativity for given EoS (the stable stars exist for higher central densities).

Therefore some EoS which ruled out by observational constraints in GR can describe real star configurations in

frames of such model of gravity. One has to note that the upper limit in this model of gravity is achieved for

smaller radii than in GR for acceptable EoS.
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Topological Gauss-Bonnet invariant:

G = R2 − 4RµνRµν + RµνξσRµνξσ , (349)

is added to the action of the Einstein gravity. One starts with the following action:

S =

∫
d4x
√
−g

(
1

2κ2
R + f (G) + Lmatter

)
. (350)

Here, Lmatter is the Lagrangian density of matter. The variation of the metric gµν :

0 =
1

2κ2

(
−Rµν +

1

2
gµνR

)
+ Tµνmatter +

1

2
gµν f (G)− 2f ′(G)RRµν

+ 4f ′(G)RµρRνρ − 2f ′(G)RµρστRνρστ − 4f ′(G)RµρσνRρσ + 2
(
∇µ∇ν f ′(G)

)
R

− 2gµν
(
∇2f ′(G)

)
R − 4

(
∇ρ∇µf ′(G)

)
Rνρ − 4

(
∇ρ∇ν f ′(G)

)
Rµρ

+ 4
(
∇2f ′(G)

)
Rµν + 4gµν

(
∇ρ∇σf ′(G)

)
Rρσ − 4

(
∇ρ∇σf ′(G)

)
Rµρνσ . (351)

The first FRW equation:

0 = −
3

κ2
H2 − f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter . (352)

Here G has the following form:

G = 24
(

H2Ḣ + H4
)
. (353)

the FRW-like equations (fluid description):

ρ
G
eff =

3

κ2
H2
, pGeff = −

1

κ2

(
3H2 + 2Ḣ

)
. (354)
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Here,

ρ
G
eff ≡− f (G) + Gf ′(G)− 24Ġf ′′(G)H3 + ρmatter ,

pGeff ≡f (G)− Gf ′(G) +
2GĠ
3H

f ′′(G) + 8H2G̈f ′′(G) + 8H2Ġ2f ′′′(G) + pmatter . (355)

When ρmatter = 0, Eq. (352) has a de Sitter universe solution where H, and therefore G, are constant. For
H = H0, with a constant H0, Eq. (352) turns into

0 = −
3

κ2
H2

0 + 24H4
0 f ′
(

24H4
0

)
− f

(
24H4

0

)
. (356)

As an example, we consider the model

f (G) = f0 |G|β , (357)

with constants f0 and β. Then, the solution of Eq. (356) is given by

H4
0 =

1

24 (8 (n − 1)κ2f0)
1

β−1

. (358)

No matter and GR. Eq. (352) reduces to

0 = Gf ′(G)− f (G)− 24Ġf ′′(G)H3
. (359)

If f (G) behaves as (357), assuming

a =

{
a0th0 when h0 > 0 (quintessence)

a0 (ts − t)h0 when h0 < 0 (phantom)
, (360)

one obtains
0 = (β − 1) h6

0 (h0 − 1) (h0 − 1 + 4β) . (361)
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As h0 = 1 implies G = 0, one may choose
h0 = 1− 4β , (362)

and Eq. (??) gives

weff = −1 +
2

3(1− 4β)
. (363)

Therefore, if β > 0, the universe is accelerating (weff < −1/3), and if β > 1/4, the universe is in a phantom
phase (weff < −1). Thus, we are led to consider the following model:

f (G) = fi |G|βi + fl |G|βl , (364)

where it is assumed that

βi >
1

2
,

1

2
> βl >

1

4
. (365)

Then, when the curvature is large, as in the primordial universe, the first term dominates, compared with the
second term and the Einstein term, and it gives

− 1 > weff = −1 +
2

3(1− 4βi )
> −

5

3
. (366)

On the other hand, when the curvature is small, as is the case in the present universe, the second term in (364)
dominates compared with the first term and the Einstein term and yields

weff = −1 +
2

3(1− 4βl )
< −

5

3
. (367)

Therefore, theory (364) can produce a model that is able to describe inflation and the late-time acceleration of

the universe in a unified manner.
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The action (350) can be rewritten by introducing the auxiliary scalar field φ as,

S =

∫
d4x
√
−g

[
R

2κ2
− V (φ)− ξ(φ)G

]
. (368)

By variation over φ, one obtains
0 = V ′(φ) + ξ

′(φ)G , (369)

which could be solved with respect to φ as
φ = φ(G) . (370)

By substituting the expression (370) into the action (368), we obtain the action of f (G) gravity, with

f (G) = −V (φ(G)) + ξ (φ(G))G . (371)

Assuming a spatially-flat FRW universe and the scalar field φ to depend only on t, we obtain the field equations:

0 =−
3

κ2
H2 + V (φ) + 24H3 dξ(φ(t))

dt
, (372)

0 =
1

κ2

(
2Ḣ + 3H2

)
− V (φ)− 8H2 d2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (373)

Combining the above equations, we obtain

0 =
2

κ2
Ḣ − 8H2 d2ξ(φ(t))

dt2
− 16HḢ

dξ(φ(t))

dt
+ 8H3 dξ(φ(t))

dt

=
2

κ2
Ḣ − 8a

d

dt

(
H2

a

dξ(φ(t))

dt

)
, (374)
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which can be solved with respect to ξ(φ(t)) as

ξ(φ(t)) =
1

8

∫ t

dt1
a(t1)

H(t1)2
W (t1) , W (t) ≡

2

κ2

∫ t dt1

a(t1)
Ḣ(t1) . (375)

Combining (372) and (375), the expression for V (φ(t)) follows:

V (φ(t)) =
3

κ2
H(t)2 − 3a(t)H(t)W (t) . (376)

As there is a freedom of redefinition of the scalar field φ, we may identify t with φ. Hence, we consider the
model where V (φ) and ξ(φ) can be expressed in terms of a single function g as

V (φ) =
3

κ2
g ′ (φ)2 − 3g ′ (φ) eg(φ)U(φ) ,

ξ(φ) =
1

8

∫ φ

dφ1
eg(φ1)

g ′(φ1)2
U(φ1) ,

U(φ) ≡
2

κ2

∫ φ

dφ1e
−g(φ1)g ′′ (φ1) . (377)

By choosing V (φ) and ξ(φ) as (377), one can easily find the following solution for Eqs.(372) and (373):

a = a0e
g(t) (H = g ′(t)

)
. (378)

Therefore one can reconstruct F (G) gravity to generate arbitrary expansion history of the universe.
Thus, we reviewed the modified Gauss-Bonnet gravity and demonstrated that it may naturally lead to the unified
cosmic history, including the inflation and dark energy era.
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String-inspired model and scalar-Einstein-Gauss-Bonnet gravity

Stringy gravity:

S =

∫
d4x
√
−g

[
R

2
+ Lφ + Lc + . . .

]
, (379)

where φ is the dilaton, Lφ is the Lagrangian of φ, and Lc expresses the string curvature correction terms,

Lφ = −∂µφ∂µφ− V (φ) , Lc = c1α
′
e

2
φ
φ0 L(1)

c + c2α
′2
e

4
φ
φ0 L(2)

c + c3α
′3
e

6
φ
φ0 L(3)

c , (380)

where 1/α′ is the string tension, L(1)
c , L(2)

c , and L(3)
c express the leading-order (Gauss-Bonnet term G in (349)),

the second-order, and the third-order curvature corrections, respectively:

L(1)
c = Ω2 , L(2)

c = 2Ω3 + RµναβRαβλρ Rλρµν , L
(3)
c = L31 − δHL32 −

δB

2
L33 . (381)

Here, δB and δH take the value of 0 or 1 and
Ω2 = G ,

Ω3 ∝ εµνρστηεµ′ν′ρ′σ′τ′η′R
µ′ν′

µν R ρ′σ′
ρσ R τ′η′

τη ,

L31 = ζ(3)RµνρσRανρβ
(

RµγδβR δσ
αγ − 2RµγδαR δσ

βγ

)
,

L32 =
1

8

(
RµναβRµναβ

)2
+

1

4
R γδ
µν R ρσ

γδ R αβ
ρσ R µν

αβ −
1

2
R αβ
µν R ρσ

αβ RµσγδR νγδ
ρ −R αβ

µν R ρν
αβ R γδ

ρσ R µσ
γδ ,

L33 =
(

RµναβRµναβ
)2
− 10RµναβRµνασRσγδρRβγδρ − RµναβRµνρσRβσγδR α

δγρ . (382)

The correction terms are different depending on the type of string theory; the dependence is encoded in the
curvature invariants and in the coefficients (c1, c2, c3) and δH , δB , as follows,

For the Type II superstring theory: (c1, c2, c3) = (0, 0, 1/8) and δH = δB = 0.

For the heterotic superstring theory: (c1, c2, c3) = (1/8, 0, 1/8) and δH = 1, δB = 0.

For the bosonic superstring theory: (c1, c2, c3) = (1/4, 1/48, 1/8) and δH = 0, δB = 1.
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The starting action is:

S =

∫
d4x
√
−g

[
R

2κ2
−

1

2
∂µφ∂

µ
φ− V (φ)− ξ(φ)G

]
. (383)

Field equations:

0 =
1

κ2

(
−Rµν +

1

2
gµνR

)
+

1

2
∂
µ
φ∂

ν
φ−

1

4
gµν∂ρφ∂

ρ
φ +

1

2
gµν (−V (φ) + ξ(φ)G)

− 2ξ(φ)RRµν − 4ξ(φ)RµρRνρ − 2ξ(φ)RµρστRνρστ + 4ξ(φ)RµρνσRρσ

+ 2
(
∇µ∇νξ(φ)

)
R − 2gµν

(
∇2
ξ(φ)

)
R − 4

(
∇ρ∇µξ(φ)

)
Rνρ − 4

(
∇ρ∇νξ(φ)

)
Rµρ

+ 4
(
∇2
ξ(φ)

)
Rµν + 4gµν (∇ρ∇σξ(φ)) Rρσ + 4 (∇ρ∇σξ(φ)) Rµρνσ . (384)

FRW eq.:

0 =−
3

κ2
H2 +

1

2
φ̇

2 + V (φ) + 24H3 dξ(φ(t))

dt
, (385)

0 =
1

κ2

(
2Ḣ + 3H2

)
+

1

2
φ̇

2 − V (φ)− 8H2 d2ξ(φ(t))

dt2

− 16HḢ
dξ(φ(t))

dt
− 16H3 dξ(φ(t))

dt
. (386)

Scalar equation
0 = φ̈ + 3Hφ̇ + V ′(φ) + ξ

′(φ)G . (387)
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In particular when we consider the following string-inspired model,

V = V0e
− 2φ
φ0 , ξ(φ) = ξ0e

2φ
φ0 , (388)

the de Sitter space solution follows:

H2 = H2
0 ≡ −

e
− 2ϕ0
φ0

8ξ0κ2
, φ = ϕ0 . (389)

Here, ϕ0 is an arbitrary constant. If ϕ0 is chosen to be larger, the Hubble rate H = H0 becomes smaller. Then, if
ξ0 ∼ O(1), by choosing ϕ0/φ0 ∼ 140, the value of the Hubble rate H = H0 is consistent with the observations.
The model (388) also has another solution:

H =
h0
t , φ = φ0 ln t

t1
when h0 > 0 ,

H = − h0
ts−t , φ = φ0 ln ts−t

t1
when h0 < 0 . (390)

Here, h0 is obtained by solving the following algebraic equations:

0 = −
3h2

0

κ2
+
φ2

0

2
+ V0t2

1 −
48ξ0h3

0

t2
1

, 0 = (1− 3h0)φ2
0 + 2V0t2

1 +
48ξ0h3

0

t2
1

(h0 − 1) . (391)

Eqs. (391) can be rewritten as

V0t2
1 =−

1

κ2 (1 + h0)

{
3h2

0 (1− h0) +
φ2

0κ
2 (1− 5h0)

2

}
, (392)

48ξ0h2
0

t2
1

=−
6

κ2 (1 + h0)

(
h0 −

φ2
0κ

2

2

)
. (393)

The arbitrary value of h0 can be realized by properly choosing V0 and ξ0. With the appropriate choice of V0 and
ξ0, we can obtain a negative h0 and, therefore, the effective EoS parameter (??) is less than −1, weff < −1,
which corresponds to the effective phantom.
For example, if h0 = −80/3 < −1 and, therefore, w = −1.025, which is consistent with the observed value, we
find

V0t2
1 =

1

κ2

(
531200

231
+

403

154
γφ

2
0κ

2
)
> 0 ,

f0

t2
1

=−
1

κ2

(
9

49280
+

27

7884800
γφ

2
0κ

2
)
. (394)
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F (R) bigravity

Non-linear massive gravity (with non-dynamical background metric) was extended to the ghost-free construction
with the dynamical metric (Hassan et al).
The convenient description of the theory gives bigravity or bimetric gravity which contains two metrics (symmetric
tensor fields). One of two metrics is called physical metric while second metric is called reference metric.

Next is F (R) bigravity which is also ghost-free theory. We introduce four kinds of metrics, gµν , gJ
µν , fµν , and

f J
µν . The physical observable metric gJ

µν is the metric in the Jordan frame. The metric gµν corresponds to the

metric in the Einstein frame in the standard F (R) gravity and therefore the metric gµν is not physical metric.

In the bigravity theories, we have to introduce another reference metrics or symmetric tensor fµν and f J
µν . The

metric fµν is the metric corresponding to the Einstein frame with respect to the curvature given by the metric

fµν . On the other hand, the metric f J
µν is the metric corresponding to the Jordan frame.

The starting action is given by

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βn en

(√
g−1f

)
. (395)

Here R(g) is the scalar curvature for gµν and R(f ) is the scalar curvature for fµν . Meff is defined by

1

M2
eff

=
1

M2
g

+
1

M2
f

. (396)

Furthermore, tensor
√

g−1f is defined by the square root of gµρfρν , that is,
(√

g−1f
)µ
ρ

(√
g−1f

)ρ
ν

=

gµρfρν .
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For general tensor Xµν , en(X )’s are defined by

e0(X ) = 1 , e1(X ) = [X ] , e2(X ) = 1
2 ([X ]2 − [X 2]) ,

e3(X ) = 1
6 ([X ]3 − 3[X ][X 2] + 2[X 3]) ,

e4(X ) = 1
24 ([X ]4 − 6[X ]2[X 2] + 3[X 2]2 + 8[X ][X 3]− 6[X 4]) ,

ek (X ) = 0 for k > 4 . (397)

Here [X ] expresses the trace of arbitrary tensor Xµν : [X ] = Xµµ. In order to construct the consistent F (R)

bigravity, we add the following terms to the action (395):

Sϕ = −M2
g

∫
d4x
√
− det g

{
3

2
gµν∂µϕ∂νϕ + V (ϕ)

}
+

∫
d4xLmatter

(
e
ϕgµν ,Φi

)
, (398)

Sξ = −M2
f

∫
d4x
√
− det f

{
3

2
f µν∂µξ∂νξ + U(ξ)

}
. (399)

By the conformal transformations gµν → e−ϕgJ
µν and fµν → e−ξf J

µν , the total action SF = Sbi + Sϕ + Sξ is
transformed as

SF =M2
f

∫
d4x
√
− det f J

{
e
−ξRJ(f ) − e

−2ξU(ξ)
}

+ 2m2M2
eff

∫
d4x
√
− det gJ

4∑
n=0

βne

(
n
2
−2
)
ϕ− n

2
ξ

en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJ

{
e
−ϕRJ(g) − e

−2ϕV (ϕ)
}

+

∫
d4xLmatter

(
gJ
µν ,Φi

)
. (400)
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The kinetic terms for ϕ and ξ vanish. By the variations with respect to ϕ and ξ as in the case of convenient
F (R) gravity, we obtain

0 =2m2M2
eff

4∑
n=0

βn

(
n

2
− 2

)
e

(
n
2
−2
)
ϕ− n

2
ξ

en

(√
gJ−1f J

)
+ M2

g

{
−e−ϕRJ(g)

+2e−2ϕV (ϕ) + e
−2ϕV ′(ϕ)

}
, (401)

0 =− 2m2M2
eff

4∑
n=0

βnn

2
e

(
n
2
−2
)
ϕ− n

2
ξ

en

(√
gJ−1f J

)
+ M2

f

{
−e−ξRJ(f ) + 2e−2ξU(ξ) + e

−2ξU′(ξ)
}
.

(402)

The Eqs. (401) and (402) can be solved algebraically with respect to ϕ and ξ as

ϕ = ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
and

ξ = ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
. Substituting above ϕ and ξ into (400), one gets F (R) bigravity:

SF = M2
f

∫
d4x
√
− det f JF (f )

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))

+ 2m2M2
eff

∫
d4x
√
− det g

4∑
n=0

βne

(
n
2
−2
)
ϕ

(
RJ(g),en

(√
gJ−1 f J

))
en

(√
gJ−1f J

)

+ M2
g

∫
d4x
√
− det gJFJ(g)

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

))
+

∫
d4xLmatter

(
gJ
µν ,Φi

)
, (403)
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F (R) bigravity

FJ(g)
(

RJ(g)
,RJ(f )

, en

(√
gJ−1f J

))
≡
{
e
−ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(g)

−e
−2ϕ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
V

(
ϕ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
, (404)

F (f )
(

RJ(g)
,RJ(f )

, en

(√
gJ−1f J

))
≡
{
e
−ξ
(

RJ(g),RJ(f ),en

(√
gJ−1 f J

))
RJ(f )

−e
−2ξ

(
RJ(g),RJ(f ),en

(√
gJ−1 f J

))
U

(
ξ

(
RJ(g)

,RJ(f )
, en

(√
gJ−1f J

)))}
. (405)

Note that it is difficult to solve Eqs. (401) and (402) with respect to ϕ and ξ explicitly. Therefore, it might be

easier to define the model in terms of the auxiliary scalars ϕ and ξ as in (400).
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

Let us consider the cosmological reconstruction program. For simplicity, we start from the minimal case

Sbi =M2
g

∫
d4x
√
− det g R(g) + M2

f

∫
d4x
√
− det f R(f )

+ 2m2M2
eff

∫
d4x
√
− det g

(
3− tr

√
g−1f + det

√
g−1f

)
. (406)

In order to evaluate δ
√

g−1f , two matrices M and N, which satisfy the relation M2 = N are taken. Since
δMM + MδM = δN, one finds

tr δM =
1

2
tr
(

M−1
δN
)
. (407)

For a while, we consider the Einstein frame action (406) with (398) and (399) but matter contribution is neglected.
Then by the variation over gµν , we obtain

0 =M2
g

(
1

2
gµνR(g) − R(g)

µν

)
+ m2M2

eff

{
gµν

(
3− tr

√
g−1f

)
+

1

2
fµρ
(√

g−1f
)−1 ρ

ν
+

1

2
fνρ
(√

g−1f
)−1 ρ

µ

}
+ M2

g

[
1

2

(
3

2
gρσ∂ρϕ∂σϕ + V (ϕ)

)
gµν −

3

2
∂µϕ∂νϕ

]
. (408)

On the other hand, by the variation over fµν , we get

0 =M2
f

(
1

2
fµνR(f ) − R(f )

µν

)
+ m2M2

eff

√
det (f−1g)

{
−

1

2
fµρ
(√

g−1f
)ρ
ν

−
1

2
fνρ
(√

g−1f
)ρ
µ

+ det
(√

g−1f
)

fµν

}
+ M2

f

[
1

2

(
3

2
f ρσ∂ρξ∂σξ + U(ξ)

)
fµν −

3

2
∂µξ∂νξ

]
.

(409)
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

We should note that det
√

g det
√

g−1f 6=
√

det f in general. The variations of the scalar fields ϕ and ξ are
given by

0 = −3�gϕ + V ′(ϕ) , 0 = −3�f ξ + U′(ξ) . (410)

Here �g (�f ) is the d’Alembertian with respect to the metric g (f ). By multiplying the covariant derivative ∇µg
with respect to the metric g with Eq. (408) and using the Bianchi identity 0 = ∇µg

(
1
2 gµνR(g) − R(g)

µν

)
and

Eq. (410), we obtain

0 =− gµν∇µg
(
tr
√

g−1f
)

+
1

2
∇µg

{
fµρ
(√

g−1f
)−1 ρ

ν
+ fνρ

(√
g−1f

)−1 ρ

µ

}
. (411)

Similarly by using the covariant derivative ∇µf with respect to the metric f , from (409), we obtain

0 =∇µf

[√
det (f−1g)

{
−

1

2

(√
g−1f

)−1ν

σ
gσµ −

1

2

(√
g−1f

)−1µ

σ
gσν + det

(√
g−1f

)
f µν
}]

.

(412)

In case of the Einstein gravity, the conservation law of the energy-momentum tensor depends from the Einstein
equation. It can be derived from the Bianchi identity. In case of bigravity, however, the conservation laws of the
energy-momentum tensor of the scalar fields are derived from the scalar field equations. These conservation laws
are independent of the Einstein equation. The Bianchi identities give equations (411) and (412) independent of
the Einstein equation.
We now assume the FRW universes for the metrics gµν and fµν and use the conformal time t for the universe
with metric gµν :

ds2
g =

3∑
µ,ν=0

gµνdxµdxν = a(t)2

(
−dt2 +

3∑
i=1

(
dx i
)2

)
,

ds2
f =

3∑
µ,ν=0

fµνdxµdxν = −c(t)2dt2 + b(t)2
3∑

i=1

(
dx i
)2

. (413)
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

Then (t, t) component of (408) gives

0 = −3M2
g H2 − 3m2M2

eff

(
a2 − ab

)
+

(
3

4
ϕ̇

2 +
1

2
V (ϕ)a(t)2

)
M2

g , (414)

and (i, j) components give

0 =M2
g

(
2Ḣ + H2

)
+ m2M2

eff

(
3a2 − 2ab − ac

)
+

(
3

4
ϕ̇

2 −
1

2
V (ϕ)a(t)2

)
M2

g . (415)

Here H = ȧ/a. On the other hand, (t, t) component of (409) gives

0 = −3M2
f K 2 + m2M2

effc2

(
1−

a3

b3

)
+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f , (416)

and (i, j) components give

0 =M2
f

(
2K̇ + 3K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− c2

)

+

(
3

4
ξ̇

2 −
1

2
U(ξ)c(t)2

)
M2

f . (417)

Here K = ḃ/b and L = ċ/c. Both of Eq. (411) and Eq. (412) give the identical equation:

cH = bK or
cȧ

a
= ḃ . (418)

If ȧ 6= 0, we obtain c = aḃ/ȧ. On the other hand, if ȧ = 0, we find ḃ = 0, that is, a and b are constant and c

can be arbitrary.
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F (R) bigravity: Cosmological Reconstruction and Cosmic Acceleration

We now redefine scalars as ϕ = ϕ(η) and ξ = ξ(ζ) and identify η and ζ with the conformal time t, η = ζ = t.
Hence, one gets

ω(t)M2
g =− 4M2

g

(
Ḣ − H2

)
− 2m2M2

eff (ab − ac) , (419)

Ṽ (t)a(t)2M2
g =M2

g

(
2Ḣ + 4H2

)
+ m2M2

eff (6a2 − 5ab − ac) , (420)

σ(t)M2
f =− 4M2

f

(
K̇ − LK

)
− 2m2M2

eff

(
−

c

b
+ 1

)
a3c

b2
, (421)

Ũ(t)c(t)2M2
f =M2

f

(
2K̇ + 6K 2 − 2LK

)
+ m2M2

eff

(
a3c

b2
− 2c2 +

a3c2

b3

)
. (422)

Here
ω(η) = 3ϕ′(η)2

, Ṽ (η) = V (ϕ (η)) , σ(ζ) = 3ξ′(ζ)2
, Ũ(ζ) = U (ξ (ζ)) . (423)

Therefore for arbitrary a(t), b(t), and c(t) if we choose ω(t), Ṽ (t), σ(t), and Ũ(t) to satisfy Eqs. (419-422), the

cosmological model with given a(t), b(t) and c(t) evolution can be reconstructed. Following this technique we

presented number of inflationary and/or dark energy models as well as unified inflation-dark energy cosmologies.

The method is general and maybe applied to more exotic and more complicated cosmological solutions.
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What is the next?

What is the next? So far F(R) gravity which also admits extensions as HL or massive gravity is
considered to be the best: simplest formulation, ghost-free, easy emergence of unified description
for the universe evolution, friendly passing of cosmological bounds and local tests, absence of sin-
gularities in some versions(Bamba-Nojiri-Odintsov 2007), possibility of easy further modifications.
More deep cosmological tests are necessary to understand if this is final phenomenological theory
of universe and how it is related with yet to be constructed QG!
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