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1 Introduction

• QG theory definition:

Let M = Σ× [0, t], then a QG theory is a map

(M, g, φ)→ (M̂, ĝ, φ̂)

such that M ⊆ M̂ , and there is a well-defined evolution operator Û(t) given by

|ΨΣ(t)〉 = Û(t)|ΨΣ(0)〉 .

• In canonical LQG and ASQG M̂ = M ; in string theory M̂ is a loop super-manifold.

• In addition, one should be able to construct the semi-classical states |ΨΣ,p0,q0(t)〉
such that

〈ΨΣ,p0,q0(t)| q̂ |ΨΣ,p0,q0(t)〉 = q0(t)

[
1 +O

(
h̄

S0(t0)

)]
,

and

〈ΨΣ,p0,q0(t)| p̂ |ΨΣ,p0,q0(t)〉 = p0(t)

[
1 +O

(
h̄

S0(t0)

)]
,

where

S0(t) =
∫ t

0
dτ (p0q̇0 −H(p0, q0, τ)) ,

is the classical action for a classical solution (p0(t), q0(t)), and t0 is a timescale of
the problem considered.

• Problems of well-known candidate QG theories

1) Û(t) not well-defined (non-renormalizability of GR + SM; in ASQG Û(t) is
assumed to exists; in CDT calculations can be done only by a computer and there
are no analytical expressions)

2) semiclassical states not known (problem in LQG)

3) q0(t) 6= q
(GR+SM)
0 (t) (problem of string theory, also in spin-foam approaches)

• PFQG (piecewise flat quantum gravity)

1) M̂ = T (M) and the number of DOF is finite (N edge lengths and matter fields
values at n vertices of T (M)). Consequently Û(t) can be defined, since the path
integral is a finite-dimensional Riemann integral, which can be made convergent by
an appropriate choice of the integration measure [3, 5].

2) The correct semi-classical limit can be obtained when N is large and edge lengths
are small, with an appropriate choice of the PI measure [1, 3]. In this case T (M) ≈
M and one can use (GR + SM) QFT with a cutoff h̄/L, where L is the average
edge length (fluid dynamics approximation).
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2 GR path integral in PFQG

• Let M be a smooth 4-dimensional manifold and let T (M) be a PL (piecewise linear)
manifold corresponding to a regular triangulation of M (the dual one simplex is a
connected 5-valent graph). Let

M = M1 t (Σ× I) tM2 ,

where
∂M1 = ∂M2 = Σ .

Figure 1: Topology of a PFQG closed spacetime manifold

• When Σ is a non-compact manifold, we maintain a finite DOF by allowing non-zero
Lε only for a triangulation of a 3-ball in Σ times an interval [0, t], which is glued to
two 4-balls in M1 and M2

• Let {Lε| ε ∈ T1(M)} be a set of the edge lengths such that L2
ε ∈ R, i.e. Lε ∈ R+

(spacelike edge) or Lε ∈ iR+ (timelike edge).

• A metric on T (M), which is flat in each 4-simplex σ of T (M), is given by

Gµν(σ) = L2
0µ + L2

0ν − L2
µν ,

where the five vertices of σ are labeled as 0, 1, 2, 3, 4 and µ, ν = 1, 2, 3, 4 (Cayley-
Menger metric).

• The CM metric is not dimensionless and hence it is not diffeomorphic to

gµν(σ) = diag(−1, 1, 1, 1) .

This can be corrected by using a dimensionless PL metric

gµν(σ) =
Gµν(σ)

|L0µ||L0ν |
.

3



Figure 2: Topology of a PFQG non-compact spatial manifold

• The Einstein-Hilbert (EH) action on M is given by

SEH =
∫
M

√
|detg|R(g) d4x ,

where R(g) is the scalar curvature associated to a metric g. On T (M) the EH action
becomes the Regge action

SR(L) =
∑

∆∈T (M)

A∆(L) δ∆(L) ,

when the edge lengths correspond to a Eucledean PL geometry. A∆ is the area of a
triangle ∆, while the deficit angle δ∆ is given by

δ∆ = 2π −
∑
σ⊃∆

θ
(σ)
∆ ,

where a dihedral angle θ
(σ)
∆ is defined as the angle between the 4-vector normals

associated to the two tetrahedrons that share the triangle ∆.

• In the case of a Lorentzian geometry, a dihedral angle can take complex values, so
that it is necessary to modify the Regge action formula such that the Regge action
takes only the real values.

• This can be seen from the formula

sin θ
(σ)
∆ =

4

3

v∆vσ
vτvτ ′

,

where vs = Vs ≥ 0, if the CM determinant is positive, while vs = iVs if the CM
determinant is negative. Consequently, sin θ

(σ)
∆ ∈ R or sin θ

(σ)
∆ ∈ iR. This implies

that the Regge action will give a complex number when the spacelike triangles are
present.
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• One can modify the Regge action as

SR(L) = Re

∑
∆(s)

A∆(s)
1

i
δ∆(s)

+
∑
∆(t)

A∆(t) δ∆(t) ,

where ∆(s) denotes a spacelike triangle, while ∆(t) denotes a timelike triangle, so
that it is always real and corresponds to the Einstein-Hilbert action on T (M).

• Consequently

Z(T (M)) =
∫
D

N∏
ε=1

dLε µ(L) eiSR(L)/l2P ,

where dLε = d|Lε| and µ(L) is a mesure that ensures the finiteness and gives the
effective action with a correct semiclassical expansion, see [1, 3]. The integration
region D is a subset of RN

+ , consistent with a choice of spacelike and timelike edges.

• Z(T (M)) is convergent for the measure

µ(L) = e−V4(M)/L4
0

N∏
ε=1

(
1 +
|Lε|2

l20

)−p
, (1)

where p > 1/2, see [3].

• The bound p > 1/2 can be easily derived from the requirement of the absolute
convergence

|Z| ≤
∫
D

N∏
ε=1

dLε µ(L) <
N∏
ε=1

∫ ∞
0

dLε

(
1 +
|Lε|2

l20

)−p
.

• Note that the convergence can be also obtained without the e−V4/L
4
0 factor in the

measure, but the exponential factor is necessary in order to obtain the correct
classical limit of the effective action, because when Lε →∞, we need

∂2 log µ(L)

∂Lε∂Lε
< 0 ,

see [1, 3, 4].
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3 PFQG with the SM matter

• When the SM matter is added, we have

Sm = SH + SYM + Sf + SY =
∫
M
d4x
√
g (LH + LYM + Lf + LY ) ,

where

LH =
1

2
Dµφ†Dµφ− λ2

0(φ†φ− φ2
0)2 , LYM = −1

4
Tr (F µνFµν) ,

Lf =
48∑
k=1

εabcdeb ∧ ec ∧ ed ψ̄k (iγa(d + iω + ig0A))ψk ,

LY =
∑
k,l

Ykl 〈ψ̄kψlφ〉 , Dµφ = (∂µ + i (g0A)µ)φ ,

and
g0A = g01A1 + g02A2 + g03A3 ∈ Lie alg (U(1)× SU(2)× SU(3)) .

• On T (M) we have
S̃H =

∑
σ

Vσ(L) sHK +
∑
π

V ∗π (L) sHP ,

where π ∈ T0(M),

sHK = gµνσ

(
φ(πµ)− φ(π0)

|L0µ|
+ ig0Aµ(π0)φπ0

)† (
φ(πν)− φ(π0)

|L0ν |
+ ig0Aν(π0)φπ0

)

and
sHP = λ2

0

(
φ†(π)φ(π)− φ2

0

)2
.

• The fermion action on T (M) is given by

S̃f =
∑
ε

V ∗ε (L) sf +
∑
π

V ∗π (L) sYMf ,

where

sf =
∑
k

εabcdBabc(p) ψ̄k(π) iγd (|Lε| iωε(L)ψk(π
′) + ψk(π

′)− ψk(π)) ,

sYMf =
∑
k

ψ̄k(π) g0γ
µ(π)Aµ(π)ψk(π) ,

and

γµ(π) = eµa(π)γa , eµa(π) =
1

nσ(π)

∑
σ;π∈σ

eµa(σ) .

• The Yukawa action on T (M) is given by

S̃Y =
∑
π

V ∗π (L) sY ,

where
sY =

∑
k,l

Ykl〈ψ̄k(π)ψl(π)φ(π)〉 .
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• Therefore the gravity plus matter path integral will be given by

Z =
∫
D
dNLµ(L) eiSR(L)/l2P Zm(L) ,

where
Zm(L) =

∫
Dm

∏
α

dnφα e
iSm(Φ,L)/h̄ ,

and Φ is a collection of matter fields φα and n is the number of vertices in T (M).

• Since the convergence of Zm is not guaranteed, we pass to a Eucledean geometry
defined by the edge lengths

L̃ε = |Lε| ,

so that all the Eucledean edge lengths are positive real numbers. This is equvalent
to a Wick rotation where L̃ε = Lε if ε is a spacelike edge and L̃ε = (−i)Lε, if ε is a
timelike edge.

• Then we will consider the integral

Z̃m(L̃) =
∫
Dm

∏
α

dnφα e
−S̃m(Φ,L̃)/h̄ ,

where S̃m is the Euclidian matter action. Since S̃m(Φ, L̃) is a positive function of φ,
and

S̃m(Φ, L̃)→ +∞ , for |φα| → +∞ ,

then the integral Z̃m will be convergent. Hence we will define

Zm(L) = Z̃m(L̃)
∣∣∣
L̃=w(L)

,

where w is the Wick rotation.

• In the case of the SM on T (M) it is useful to write the action as

S = S1 + S2 + S̃2 + S3 ,

where

S1 = r3〈ψ̄ψ〉+ r4〈ψ̄ψA〉+ r4〈ψ̄ψφ〉
S2 = r4〈(Ar−1 + g0A

2)2〉
S̃2 = r3〈c̄(r−1 + g0Ac)〉
S3 = r4〈(φr−1 + g0Aφ)2〉+ λ2

0r
4〈(φ2 − φ2

0)2〉 .

The bracket 〈XY · · ·〉 represents a sum∑
α,β,...

cαβ...(θ)XαYβ · · · ,

and (r, θ) are the spherical coordinates for a vector L̃.
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• After integrating the fermions and the ghosts, it can be shown that

|Zm(L)| < rc
′nFn(θ) ,

where
c′ = 3cf − c∗b = 3cf − 2|G| − 4 = 260 ,

and
Fn(θ) =

∫
DχDξ e−s(θ,ξ,χ)∆ferm(ξ, χ)∆ghost(ξ) ,

see [5]. The new variables are given by ξ = rA and χ = rφ, while s(θ, ξ, χ) is the YM
action plus the kinetic part of the Higgs action. ∆ferm is the fermionic determinat
and ∆ghost is the ghost determinant.

• Consequently

|Z| <
∫
D
dNLµ(L)|Zm(L)| <

∫
dNLµ(L)rc

′nFn(θ) ,

so that
|Z| <

∫ ∞
0

rN−1+c′ndr
∫

Ω
JN(θ)µ(r, θ)Fn(θ)dN−1θ .

By using the asymptotic properties of µ(r, θ) for small and large r, we obtain

|Z| < C1

∫ R

0
rc

′n+N−1dr + C2

∫ ∞
R

rc
′n+N−1−2pNdr .

• Hence we can guarantee the absolute convergence of the PFQG path integral if

c′n+N(1− 2p) < 0 ,

so that
c′

2p− 1
<
N

n
.

• For a regular triangulation we have

N

n
≥ N∗1
N∗0
≥ 5

2
,

so that if c′/(2p− 1) < 5/2, then the absolute convergence bound will be satisfied,
which gives

p > 52,5 .
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4 The effective action

• In QFT the EA can be determined from the EA equation

eiΓ[g,φ]/h̄ =
∫
DhDϕ exp

(
i

h̄
S[g + h, φ+ ϕ]− i

h̄

∫
M

(
δΓ

δg(x)
h(x) +

δΓ

δφ(x)
ϕ(x)

)
√
g d4x

)
.

• On T (M) the EA equation becomes

eiΓ(L,Φ)/h̄ =
∫
D(L)

dN l
∫
Dm

dcnϕµ(L+ l) eiS(L+l,Φ+ϕ)/h̄−i
∑

ε
Γ′
ε(L,Φ)lε/h̄−i

∑
π

Γ′
π(L,Φ)ϕπ/h̄ ,

where c is the number of components of the matter fields (c = cf + cgh + cb =
96 + 24 + 52 = 172 for the SM) and

S(L,Φ) =
1

GN

SR(L) + Sm(L,Φ) .

• The EA equation will be only defined if the gravity plus matter path integral is
finite, which is the case for p > 52,5. This is a consequence of

|Z̃m(L̃, J)| ≤ Z̃m(L̃) ,

where
Z̃m(L̃, J) =

∫
Dm

∏
α

dnφα e
[−S̃m(Φ,L̃)+iJΦ]/h̄ .

• If Γ is not a real solution of the EA equation, then

Γ→ ReΓ + ImΓ .

4.1 The smooth-manifold approximation

• Let N →∞ and |Lε| = O(1/N) in T (Σ× I), such that

gµν(x) ≈ gµν(σ) , φα(x) ≈ Φα(v) for x ∈ σ and v = dual vertex ∈ σ ,

where gµν(x) is a smooth metric on Σ × I and φα(x) is a smooth matter field on
Σ× I. Then

Γ(L,Φ) ≈ ΓK [gµν(x), φ(x)] , x ∈ Σ× I ,
where ΓK is the QFT effective action for the cutoff K = 2π/L̄ and L̄ is the average
edge length in T (Σ× I).

• Consequence of a theorem that a PL function Fourier expansion on an interval NL̄
can be approximated by a Fourirer integral with a cutoff K = 2π/L̄ for N large.

• We also have

Γ(L,Φ)

h̄
=
SR(L) +GN Sm(L,Φ)

l2P
+ Γ1(L,Φ) + l2P Γ2(L,Φ) + l4P Γ3(L,Φ) + · · · ,

≈ ΓK(g, φ)

h̄
=

1
GN
SEH(g) + Sm(g, φ)

h̄
+ Γ

(1)
K (g, φ) + h̄Γ

(2)
K (g, φ) + h̄2 Γ

(3)
K (g, φ) + · · · ,

for |Lε| � lP and small φ, where Γ
(n)
K is an n-loop QFT effective action for GR

coupled to matter, while Γn is a coefficient of the perturbative solution in l2P = GN h̄,
see [2].
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• Note that |Lε| � lP still allows for |Lε| to be microscopically small, so that the
smooth-manifold approximation is still valid. For example, the distance probed in
the LHC experiments is of the order of 10−20m, while lP ≈ 10−34m.

• One can also add the cosmological constant (CC) term to the Regge action, so that

SR(L)→ SR(L) + ΛcV4(L) .

Then the condition for the semi-classical expansion of the EA, |Lε| � lP and L0 �
lP , is substituted by

|Lε| � lP , L0 �
√
lPLc ,

where |Λc| = 1/L2
c [2].

• One can then show that the observed value of the CC belongs to the spectrum of
the CC in PFQG, provided that the path integral for gravity + matter is finite, see
[2, 4]. Since the PI is finite for p > 52,5 then the proof given in [4] is now complete.
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5 Conclusions

• PFQG defined by the PI measure (1) is the first example of a simple and mathe-
matically complete theory of quantum gravity with the SM matter.

• One can construct the Hartle-Hawking states via the PFQG path integral for the
manifold

Figure 3: Topology of the Hartle-Hawking manifold

• The Vilenkin states can be constructed from the path integral for the PL manifold
T (Σ× [0, t]), by taking the limit Lε → 0 and φv → 0 on the initial surface T (Σ).

Figure 4: Topology of the QM propagator manifold.

• The EA can be associated to a quantum state via Fig. 5, see [6].

• Physics of PFQG ≈ dynamics of the effective action.
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Figure 5: Topology of the effective action manifold

• Perturbative EA ≈ long edge-length (Lε � lP ) expansion ≈ QFT with a cutoff
h̄K � EP .

• New physics ≈ non-perturbative EA (Lε ≈ lP ).

• Non-perturbative EA ≈ short edge-length expansion of the EA

Γ(L,Φ) ≈
∑

k1+k2+···+kN≥ 0

l
−(k1+···+kN )
P γk1k2···kN (Φ)Lk11 L

k2
2 · · ·L

kN
N .
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