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Jaume Haro (Universitat Politècnica de Catalunya) Gravitational reheating formulas in oscillating backgrounds



Reheating via gravitational production of heavy particles
Bounds on the maximum reheating temperature and viable masses

Outline

Reheating via gravitational production of heavy particles
Decay before the end of the background domination
Decay after the end of the background domination

Bounds on the maximum reheating temperature and viable
masses

Born approximation
Application to α-attractors
Numerical calculations
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Gravitational reheating is a mechanism to reheat the Universe
(recall that, without reheating, inflation does not work), where heavy
particles are produced when the inflaton field oscillates around the
minimum of the potential, due to the interaction of a quantum field
with the oscillating gravitational field (not through direct interaction
with the inflaton).
Since, after inflation, the energy density of the produced particles (or
that of their decay products ) eventually has to dominate that of the
inflaton for the Universe to become reheated, we demand that the
energy density of the inflaton decreases faster than that of
radiation. This requires that the EoS parameter satisfies weff > 1/3.
For a potential behaving like ϕ2n, this requires n > 2.
Otherwise, if the inflaton’s energy density decreases more slowly than
that of radiation, it could dominate again during this period, which is
incompatible with the concordance model. Therefore, potentials
appearing in Starobinsky (n = 1) or Higgs inflation, cannot include
gravitational reheating as a mechanism to reheat the universe. (In
that case one can use Instant Preheating or standard reheating based
in quadratic interaction between the inflaton and the quantum field).
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We begin by denoting ρB(t) and 〈ρ(t)〉 as the energy densities of the
background (the inflaton) and produced particles, respectively.
Assuming that close to the minimum of the potential, which for
simplicity we take as ϕmin = 0, the potential behaves like ϕ2n, for
example:

Vn(ϕ) = λM4
pl

(
1− e−

√
2
3

ϕ
Mpl

)2n

, (1)

we can conclude that, when the inflaton oscillates, the effective
Equation of State (EoS) parameter is given by weff = n−1

n+1 (as a
consequence of the ”virial theorem”). Then, n > 2 =⇒ weff > 1/3.
During the oscillations of the inflaton, which takes place shortly after
the end of inflation and prior to the decay of the produced particles,
and denoting by ”END” the end of inflation, the evolution of its energy
density as a function of the scale factor, namely a, is:

ρB(t) = ρB,END

(
aEND
a(t)

)3(1+weff )

= ρB,END

(
aEND
a(t)

) 6n
n+1

. (2)
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Next we deal with the energy density of the produced particles with
mass mχ. Taking into account that its mean ingredient are the
β-Bogoliubov coefficient, whose evolution, for the k-mode, is: α̇k(t) = ω̇k(t)

2ωk(t)e
−2i

∫ t ωk(t)

a(t)
dtβk(t)

β̇k(t) = ω̇k(t)
2ωk(t)e

2i
∫ t ωk(t)

a(t)
dtαk(t),

, ωk(t) =
√
k2 +m2

χa
2(t), (3)

and the relationship |αk(t)|2 − |βk(t)|2 = 1.
It is crucial to recognize that the β-Bogoliubov coeff. encapsulate
both vacuum polarization effects and particle production. Shortly after
the initiation of the oscillations, the polarization effects disappear.
Thus, when they stabilize at a value βk, the coeff. only reflect the
contribution of the produced particles, and its energy density, is:

〈ρ(t)〉 =
1

2π2a4(t)

∫ ∞
0

k2ωk(t)|βk|2dk ∼=
mχ

2π2a3(t)

∫ ∞
0

k2|βk|2dk. (4)

Two distinct scenarios unfold: decay during and after the conclusion
of the inflaton’s domination. So, we will delve into both situations.

Jaume Haro (Universitat Politècnica de Catalunya) Gravitational reheating formulas in oscillating backgrounds



Reheating via gravitational production of heavy particles
Bounds on the maximum reheating temperature and viable masses

Decay before the end of the background domination
Let Γ be the decay rate of the heavy massive particles, and it is worth
noting that the decay process concludes when Γ is of the same
order as the Hubble rate, namely H(t).

Denoting ρB,dec and 〈ρdec〉 as the energy density of the background
and that of the produced particles at the end of the decay,
respectively, after the decay, they evolve as:

ρB(t) = ρB,dec

(
adec
a(t)

) 6n
n+1

and 〈ρ(t)〉 = 〈ρdec〉
(
adec
a(t)

)4

, (5)

because, after the decay, the particles are currently relativistic.

Hence, given the virtually instantaneous nature of the thermalization
process, the universe undergoes reheating at the conclusion of
the inflaton’s domination, denoted by the sub-index end, that is,
when both energy densities are of the same order. This leads to the
relation:
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(
adec
aend

) 2(n−2)
n+1

=
〈ρdec〉
ρB,dec

=⇒ 〈ρend〉 = 〈ρdec〉
3n
n−2 ρ

− 2(n+1)
n−2

B,dec . (6)

Therefore, from the Stefan-Boltzmann law, the reheating
temperature, for a potential like ϕ2n, has the following expression:

Treh(n) ≡
(

30

π2greh

)1/4

〈ρend〉
1
4 =

(
30

π2greh

)1/4

〈ρdec〉
1
4

(
〈ρdec〉
ρB,dec

) n+1
2(n−2)

, (7)

where greh = 106.75 is the effective number of degrees of freedom for
the Standard Model.
At this juncture, we can enhance this formula by considering the
value of the corresponding energy densities at the decay. They follow
the expressions:

ρB,dec = 3H2
ENDM

2
pl

(
aEND
adec

) 6n
n+1

, 〈ρdec〉 = 〈ρEND〉
(
aEND
adec

)3

. (8)
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Then, when the heavy particles have completely decayed, which
occurs when H ∼ Γ, the semi-classical Friedmann equation

H2 =
1

3M2
pl

(ρB + 〈ρ〉), becomes:

3Γ2M2
pl = ρB,ENDx

2n
n+1 + 〈ρEND〉x =⇒

3Γ2M2
pl

ρB,END
= x

2n
n+1 +

〈ρEND〉
ρB,END

x, (9)

where x =
(
aEND
adec

)3

. The solution has the form

x = Fn(Θ1,Θ2), (10)

where Fn is a function which depend on n and the parameters:
Θ1 = 〈ρEND〉

ρB,END
and Θ2 =

3Γ2M2
pl

ρB,END
. For example, when n =∞, i.e. when

weff = 1, ones has:

F∞(Θ1,Θ2) =
1

2

(√
Θ2

1 + 4Θ2 −Θ1

)
, (11)
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and for n = 3 we obtain x3/2 + Θ1x−Θ2 = 0 which is a cubic
equation when one introduces the variable x = z2. This equation can
be solved using the Cardano’s formulas, obtaining:

F3(Θ1,Θ2) =

 3

√√√√1

2

(
Θ2 −

2Θ3
1

27
+

√
Θ2

(
Θ2 −

4Θ3
1

27

))
+

3

√√√√1

2

(
Θ2 −

2Θ3
1

27
−

√
Θ2

(
Θ2 −

4Θ3
1

27

))
− Θ1

3


2

, (12)

provided that Θ2 − 4Θ3
1

27 > 0, what always happens.
Effectively, from the equation x3/2 + Θ1x−Θ2 = 0 we have the bound
Θ2 > Θ1x. On the other hand, since the decay occurs during the
domination of the inflaton’s energy density, one has 〈ρdec〉 ≤ ρB,dec
which is equivalent to Θ2

1 ≤ x, then we have:

Θ2 −
4Θ3

1

27
> Θ1x

(
1− 4

27

)
> 0. (13)
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Coming back to the reheating formula, we can write:

Treh(n) =

(
90

π2greh

)1/4(
Θ3

1

Fn(Θ1,Θ2)

) n
4(n−2) √

HENDMpl. (14)

Since the decay occurs during the domination of the inflaton’s energy
density, we have the constraints Γ ≤ HEND and 〈ρdec〉 ≤ ρB,dec,
which after some algebra, is equivalent to Θ

n+1
n−1

1 ≤ Fn(Θ1,Θ2).
Finally, we calculate the maximum reheating temperature, which is

obtained when 〈ρdec〉 = ρB,dec, that is, when Fn(Θ1,Θ2) = Θ
n+1
n−1

1 , and
thus, the maximum reheating temperature is given by:

Tmaxreh (n) ∼= 5× 10−1Θ
n

2(n−1)

1

√
HENDMpl, Θ1 =

〈ρEND〉
ρB,END

. (15)

Suppose that the particles decay before their energy dominates
that of the inflaton. Then, from this moment, their energy will
decrease faster than if the particles had not decayed, and thus,
the energy of the particles will take longer to surpass that of the
inflaton. Therefore, the reheating temperature will be lower.
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Decay after the end of the background domination
We will examine the scenario where the decay occurs after the end of
domination of the inflation’s energy density. Given the instantaneous
nature of the thermalization process, reheating is concluded upon the
completion of decay. Therefore, the reheating temperature is:

Treh =

(
30

π2greh

)1/4

〈ρdec〉1/4, (16)

where one must ensure that Γ ≤ Hend. The value of the Hubble rate
at the end of the background domination can be calculated by
considering that, in this scenario, the energy density of the produced
particles decays as a−3 throughout the entire domination of the
inflaton’s energy density. Thus, at the end of the background
domination:

Θ1 =
〈ρEND〉
ρB,END

=

(
aEND
aend

) 3(n−1)
n+1

=⇒ H2
end = 2H2

ENDΘ
2n
n−1

1 , (17)
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and thus, the constraint Γ ≤ Hend, becomes Γ ≤
√

2Θ
n
n−1

1 HEND.

To refine the formula for the reheating temperature (16), we perform
the following calculation:

〈ρend〉 = ρB,ENDΘ
2n
n−1

1 =⇒ 〈ρdec〉1/4 = ρ
1/4
B,ENDΘ

n
2(n−1)

1

(
aend
adec

)3/4

. (18)

Therefore, when the decay is immediately finished, introducing the

notation y =
(
aend
adec

)3

, the semi-classical Friedmann is given by:

3Γ2M2
pl = ρB,end(y + y

2n
n+1 ) =⇒ y

2n
n+1 + y −Θ2Θ

− 2n
n−1

1 = 0, (19)

where we have used that 3Γ2M2
pl

ρB,end
= Θ2Θ

− 2n
n−1

1 .
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Writing the solution as:(
aend
adec

)3

= Gn(Θ2Θ
− 2n
n−1

1 ), (20)

and thus, using the formula (18), the reheating temperature takes the
following form:

Treh(n) =

90Gn(Θ2Θ
− 2n
n−1

1 )

π2greh

1/4

Θ
n

2(n−1)

1

√
HENDMpl. (21)

Finally, we can see the simplest expression of this reheating
temperature is obtained when n =∞, obtaining

G∞(Θ2Θ−2
1 ) =

1

2Θ2
1

(√
Θ4

1 + 4Θ2
2 −Θ2

1

)
, (22)

and thus,

Treh(∞) =

(
45(
√

Θ4
1 + 4Θ2

2 −Θ2
1)

π2greh

)1/4√
HENDMpl. (23)
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Important: To have a succesfull BBN we demand
1MeV < Treh < 109GeV. Note that 109 GeV is a conservative bound.
To obtain the maximum reheating temperature we have to calculate
the value of Θ1. The problem is that 〈ρEND〉 has to be calculated
numerically, and in the literature only appears analytic formulas in the
quadratic case V (ϕ) = 1

2m
2
ϕϕ

2. However for a quadratic model,
weff = 0, that is, the energy density of the inflaton scales as matter,
what makes impossible a successful reheating.
Anyway, to have an analytic formula for the maximum reheating
temperature, we will assume that for values of n of the order 1, the
energy density of the produced particles is of the same order than the
one obtained in the quadratic case. Therefore, we will start using the
formula (Y. Ema, K. Nakayama and Y. Tang, JHEP 09 135 (2018)):

〈ρEND〉 ∼= CH3
∗mχ

(
mχ

mϕ

)4

, (24)

where mχ � mϕ, H∗ is the scale of inflation, i.e., the value of the
Hubble rate at the horizon crossing and C ∼= 2× 10−3 is a
dimensionless constant.
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Firstly, we have to take into account that for a quadratic potential one
has

ε∗ =
1

4
(1− ns), ϕ2

∗ =
8M2

pl

1− ns
, (25)

where ns is the spectral index,
Next, we will use that, at the horizon crossing, the Friedmann
equation is:

H2
∗
∼=

1

6M2
pl

m2
ϕϕ

2
∗, (26)

and from the formula of the power spectrum of scalar perturbations
H2
∗

8π2ε∗M2
pl
∼ 2× 10−9 we get:

m2
ϕ ∼ 3π2 × 10−9(1− ns)2M2

pl
∼= 3π2 × 10−12M2

pl, (27)

and

H∗ ∼= 2π
√

10(1− ns)10−5Mpl ∼ 4× 10−5Mpl, (28)

where we have taken ns ∼= 0.96.
Jaume Haro (Universitat Politècnica de Catalunya) Gravitational reheating formulas in oscillating backgrounds



Reheating via gravitational production of heavy particles
Bounds on the maximum reheating temperature and viable masses

Inserting the value of mϕ in the formula (24) one finds:

〈ρEND〉 ∼ 2× 1018H3
∗mχ

(
mχ

Mpl

)4

, (29)

for mχ � mϕ ∼ 5× 10−6Mpl. Therefore, we will obtain:

Θ1 ∼ 6× 1017 H3
∗mχ

H2
ENDM

2
pl

(
mχ

Mpl

)4

. (30)

To find a bound for the maximum reheating temperature, note that, for
a quadratic model HEND = 1√

2
mϕ ∼ 4× 10−6Mpl and, as we have

already seen in last slide, H∗ ∼ 4× 10−5Mpl. Then, one gets

Θ1
∼= 2× 1015

(
mχ
Mpl

)5

. Therefore, taking into account that

Tmaxreh (n) ∼= 5× 10−1Θ
n

2(n−1)

1

√
HENDMpl, and the bound

Θ
n

2(n−1)

1 <
√

Θ1 for n ≥ 2, one gets:

Tmaxreh (n) < 5× 104

(
mχ

Mpl

)5/2

Mpl < 10−13Mpl ∼ 2× 105GeV. (31)
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Next, we will consider another analytic formula for the energy density
of the produced particles (E. W. Kolb and A. J. Long, (2024)
[arXiv:2312.09042]):

〈ρEND〉 =
H2
ENDm

2
χ

16π2
, (32)

for conformally coupled particles satisfying mχ < HEND.
In this case,

Θ1 =
m2
χ

48π2M2
pl

∼ 2× 10−3
m2
χ

M2
pl

. (33)

Finally, we have:

Tmaxreh (n) < 4× 10−5mχ < 4× 10−12Mpl ∼ 107GeV, (34)

where we have taken HEND ∼ 4× 10−6Mpl and mχ < 10−7Mpl.
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MORE ACCURATE BOUNDS:
Case n = 3.

V3(ϕ) = λM4
pl

(
1− e−

√
2
3

ϕ
Mpl

)6

. (35)

For this potential, we will have weff = 1/2, λ ∼ 5× 10−11,

HEND ∼ 9× 10−7Mpl and H∗ ∼=
√

λ
3Mpl

∼= 4× 10−6Mpl.
In this case, the maximum reheating temperature becomes:

Tmaxreh (3) ∼= 5× 10−4Θ
3/4
1 Mpl

∼= 2× 105 〈ρEND〉3/4

M2
pl

, (36)

where we have used that Θ1
∼= 4× 1011 〈ρEND〉

M4
pl

.
If one considers, the gravitational particle production given by the

formula (29), i.e., 〈ρEND〉 ∼ 2× 1018H3
∗mχ

(
mχ
Mpl

)4

, one gets:

Tmaxreh (3) ∼ 8× 106

(
mχ

Mpl

)3

(m3
χMpl)

1/4 < 5× 10−20Mpl ∼ 102MeV, (37)

for mχ < 10−7Mpl.
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On the other hand, to have a successful reheating we have to impose
Treh > 1 MeV, what constraints the mass to the range:

3× 10−8Mpl < mχ < 10−7Mpl. (38)

And considering (32), i.e., 〈ρEND〉 =
H2
ENDm

2
χ

16π2 , for n = 3, we will have:

Tmaxreh (3) ∼ 3× 10−6

(
mχ

Mpl

)3/2

Mpl < 9× 10−17Mpl ∼ 2× 102GeV. (39)

In that case, the viable masses must satisfy:

3× 10−11Mpl < mχ < 10−7Mpl. (40)

Note also that, making the same kind of calculation, for not viable
potentials, i.e., as we have already discussed, for n ≤ 2, the
maximum reheating temperature is less than 10 MeV.
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Case n→∞ . We consider the extreme case, where after inflation
the universe enters in a stiff or kination phase (weff = 1).
In this case the maximum reheating temperature is given by
Tmaxreh (∞) ∼= 5× 10−1

√
Θ1HENDMpl, and the expression of the

parameter Θ1 is:

Θ1 =
〈ρEND〉

3H2
ENDM

2
pl

∼ 3× 1011 〈ρEND〉
M4
pl

, (41)

where we have taken HEND ∼ 10−6Mpl.
Therefore, recalling that from the analytic formula (24), we have

obtained 〈ρEND〉 ∼ 2× 1018H3
∗mχ

(
mχ
Mpl

)4

, we will have:

Θ1 ∼ 6× 1029H
3
∗mχ

M4
pl

(
mχ

Mpl

)4

∼ 4× 1013

(
mχ

Mpl

)5

, (42)

where we have chosen H∗ ∼ 4× 10−6Mpl. And the maximum
reheating temperature becomes:

Jaume Haro (Universitat Politècnica de Catalunya) Gravitational reheating formulas in oscillating backgrounds



Reheating via gravitational production of heavy particles
Bounds on the maximum reheating temperature and viable masses

Tmaxreh (∞) ∼ 3× 103

(
mχ

Mpl

)5/2

Mpl < 10−14Mpl ∼ 2× 104GeV, (43)

where we have used that mχ < 10−7Mpl ∼ 2× 1011 GeV.
In that case the viable masses are the ones satisfying:

6× 10−11Mpl < mχ < 10−7Mpl. (44)

And for the analytic formula (32), i.e., 〈ρEND〉 =
H2
ENDm

2
χ

16π2 , we have

already seen that Θ1 ∼ 2× 10−3 m
2
χ

M2
pl

, obtaining:

Tmaxreh (∞) ∼ 2× 10−5 mχ

Mpl
Mpl < 2× 10−12Mpl ∼ 5× 106GeV. (45)

And the viable masses are in the range:

10−17Mpl < mχ < 10−7Mpl. (46)

Jaume Haro (Universitat Politècnica de Catalunya) Gravitational reheating formulas in oscillating backgrounds



Reheating via gravitational production of heavy particles
Bounds on the maximum reheating temperature and viable masses

Born approximation
In the Born approximation, the creation rate of χ-particles, satisfying
mχ < ω(t), is:

Γχ(t) ∼
m4
χ

16π(n+ 1)2ω(t)M4
pl

ϕ2(t) with Vn(ϕ) ∼ ϕ2n, (47)

where the leading frequency ω is approximately

ω(t) ∼
√
ρB(t)

ϕ(t)
=⇒ ωEND ∼

√
3HENDMpl

ϕEND
(48)

Next, we use the evolution equation:

d〈ρ(t)〉
dt

= Γχ(t)ρB(t), (49)

which after one Hubble time can be approximated by

〈ρEND〉 ∼=
Γχ,END
HEND

ρB,END, (50)
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and thus,

Θ1 =
〈ρEND〉
ρB,END

∼=
Γχ,END
HEND

∼=
1

16
√

3π(n+ 1)2

(
mχ

Mpl

)4
ϕ3
END

H2
ENDMpl

. (51)

On the other hand, to obtain ϕEND and HEND we solve

ε ≡ M2
pl

2

(
V ′n
Vn

)2

= 1 for Vn(ϕ) = λM4
pl

(
1− e−

√
2
3

ϕ
Mpl

)2n

, obtaining:

ϕEND = −
√

3

2
ln

(
2
√

3n− 3

4n2 − 3

)
Mpl (52)

HEND =

√
λ

2

(
1− 2

√
3n− 3

4n2 − 3

)n
Mpl. (53)

And from the formula of the power spectrum of scalar perturbation
H2
∗

8π2ε∗M2
pl
∼ 2× 10−9 and 3M2

plH
2
∗ ∼ Vn(ϕ∗) ∼ λM4

pl, we get:

λ ∼ 3π2(1− ns)210−9 ∼= 5× 10−11 where ns ∼= 0.96. (54)
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Therefore, we arrive at:

Θ1
∼= 109 1

(n+ 1)2

(
mχ

Mpl

)4

ln3

(
4n2 − 3

2
√

3n− 3

)(
1− 2

√
3n− 3

4n2 − 3

)−2n

. (55)

and the maximum reheating temperature is given by:

Tmaxreh (n) ∼= 4× 10
2n+7

2(n−1)
1

(1 + n)
n
n−1

(
mχ

Mpl

) 2n
n−1

(
ln

(
4n2 − 3

2
√

3n− 3

)) 3n
2(n−1)

(
1− 2

√
3n− 3

4n2 − 3

)−n(n+1)
n−1

Mpl. (56)
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Tmaxreh for mχ < 2× 1011 GeV Viable masses

n = 3 104
(
mχ
Mpl

)3

Mpl < 20GeV 1010 GeV < mχ

n = 4 2× 103
(
mχ
Mpl

)8/3

Mpl < 102GeV 109 GeV < mχ

n = 5 6× 102
(
mχ
Mpl

)5/2

Mpl < 5× 103GeV 5× 108 GeV < mχ

n = 6 4× 102
(
mχ
Mpl

)12/5

Mpl < 104GeV 2× 108 GeV < mχ
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Application to α-attractors
We deal with α-attractors whose potential is:

Vn(ϕ) = λMpl

(
√

6 tanh

(
ϕ√

6Mpl

))2n

, (57)

with (from the formula of the power spectrum of scalar perturbations):

λ ∼=
36π2

6nN2
∗

10−9 ∼= 6−n10−10, (58)

where we have chosen as the number of last efolds N∗ = 55.
In the minimally coupled case, the authors of arXiv:2404.06530
numerically found that for masses of the order mχ ∼ 10−4HEND, the
energy density of the minimally coupled produced particles, when
n = 4, is:

〈ρEND〉 ∼= 102H3
ENDmχ = 10−2H4

END, (59)
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what leads to:

Θ1
∼= 3× 10−3

(
HEND

Mpl

)2

. (60)

Consequently, the maximum reheating temperature is:

Tmaxreh (4) =

(
90

π2greh

)1/4

Θ
2/3
1

√
HENDMpl

∼= 10−2

(
HEND

Mpl

)11/6

Mpl. (61)

To find HEND, we solve the equation M2
pl

2

(
V ′n
Vn

)2

= 1, obtaining:

sinh2

(
2ϕEND√

6Mpl

)
=

2n2

9
, (62)

which after some algebra, one gets:

Vn(ϕEND) ∼= 10−10M4
pl

(
18 + 2n2 − 6

√
9 + 2n2

2n2

)n
, (63)
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and thus:

HEND
∼= 7× 10−6

(
18 + 2n2 − 6

√
9 + 2n2

2n2

)n/2
Mpl. (64)

Then, for n = 4 one has HEND ∼ 10−6Mpl, what leads to the
following maximum reheating temperature:

Tmaxreh (4) ∼= 10−13Mpl
∼= 2× 105 GeV. (65)

In the same way, for n = 8, one gets:

Tmaxreh (8) ∼= 8× 10−13Mpl
∼= 2× 106 GeV. (66)
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Numerical calculations

Potential: V3(ϕ) = 5× 10−11M4
pl

(
1− e−

√
2
3

ϕ
Mpl

)6

Figure: Case n = 3: Stabilisation of the value of |βk|2 after the end of inflation
for mχ = 10−2HEND in function of the number of e-folds after the end of
inflation for different modes.
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We verified that the value of |βk|2 attains a non-trivial value for modes
k < e5aENDHEND and the contribution of the modes satisfying
k ≤ e−3aENDHEND to the value of 〈ρEND〉 is negligible. Once we
have obtained the values of the β-Bogoliubov coefficients we
approximate the value of 〈ρEND〉 via a Riemann sum as:

〈ρEND〉 ∼= 3× 10−3H2
ENDm

2
χ. (67)

Therefore,

Θ1
∼= 10−3

(
mχ

Mpl

)2

= 10−7

(
HEND

Mpl

)2

, (68)

and the maximum reheating temperature, for masses of the order
mχ ∼ 10−2HEND, is given by:

Tmax
reh (3) ∼= 3× 10−6H

2
END

Mpl

∼= 2× 10−18Mpl ∼ 5 GeV. (69)
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CONCLUSIONS:
1 For potentials that near the minimum behave like ϕ2n, the

maximum reheating temperature is:

Tmaxreh (n) ∼= 5× 10−1Θ
n

2(n−1)

1

√
HENDMpl, (70)

where Θ1 = 〈ρEND〉
3H2

ENDM
2
pl

. Note that the value of the Hubble rate at
the end of inflation can be calculated analytically.

2 For the analytic formulas, obtained for no viable quadratic
potentials, with mχ < 10−7Mpl:

〈ρEND〉 =
H2
ENDm

2
χ

16π2
, 〈ρEND〉 ∼ 2× 1018H3

∗mχ

(
mχ

Mpl

)4

, (71)

the maximum reheating temperature is bounded by
1MeV < Tmaxreh < 109GeV, overpassing the gravitino problem and
obtaining a reheated universe before the BBN.
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3 We have seen that the maximum reheating temperature
increases as n increases.

4 We have found the values of the mass mχ that yield a viable
maximum reheating temperature in the range from
1 MeV to 109 GeV.
In all situations n = 3, 4, ..., masses satisfying the constraint:

3× 10−8Mpl < mχ < 10−7Mpl, (72)

lead to a viable maximum reheating temperature.
Of course, when n increases the range of the viable masses is
larger.
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Thank you for your attention.
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