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Introduction

Invariant differential operators play very im-
portant role in the description of physical sym-
metries - starting from the early occurrences
in the Maxwell, d’Allembert, Dirac, equations,
to the latest applications of (super-)differential
operators in conformal field theory, supergrav-
ity and string theory (for reviews, cf. e.g., Mal-
dacena, Terning]. Thus, it is important for the
applications in physics to study systematically
such operators. For more relevant references
cf., e.g., [VKD1].

Recently we started the systematic explicit
construction of invariant differential operators.
We gave an explicit description of the build-
ing blocks, namely, the parabolic subgroups
and subalgebras from which the necessary rep-
resentations are induced. Thus we have set



the stage for study of different non-compact
groups.

Since the study and description of detailed
classification should be done group by group
we had to decide which groups to study. One
first choice would be non-compact groups that
have discrete series of representations. By the
Harish-Chandra criterion these are groups where
holds:

rank G = rank K,

where K is the maximal compact subgroup of
the non-compact group G. Another formula-
tion is to say that the Lie algebra ¢ of G has
a compact Cartan subalgebra.

Example: the groups SO(p, q) have discrete se-
ries, except when both p,q are odd numbers.

This class is rather big, thus, we decided to
consider a subclass, namely, the class of Hermi-
tian symmetric spaces. The practical criterion



IS that in these cases, the maximal compact
subalgebra IC is of the form:

K = so(2)a K’

The Lie algebras from this class are:

so(n,2), sp(n,R), su(m,n), so"(2n),
Ee(—14), F7(-25)
These groups/algebras have highest /lowest weight

representations, and relatedly holomorphic dis-
crete series representations.

The most widely used of these algebras are
the conformal algebras so(n,2) in n-dimensional
Minkowski space-time. In that case, there is
a maximal Bruhat decomposition with direct
physical meaning:

so(n,2) = M AN e N,

M = so(ln—1,1), dimA=1,
dimN =dimN =n



where so(n — 1,1) is the Lorentz algebra of
n-dimensional Minkowski space-time, the sub-
algebra A = s0(1,1) represents the dilata-
tions, the conjugated subalgebras N, N are
the algebras of translations, and special con-
formal transformations, both being isomorphic
to n-dimensional Minkowski space-time.

The subalgecbra P=Mp APN (EM
A @ N') is a maximal parabolic subalgebra.

There are other special features which are im-
portant. In particular, the complexification of
the maximal compact subgroup is isomorphic
to the complexification of the first two factors
of the Bruhat decomposition:

KC so(n,C) & so(2,C) =
so(n —1,1)C @ s0(1,1)¢ = MC @ AC .

[ral

In particular, the coincidence of the complex-
ification of the semi-simple subalgebras:

IC/C — M(C (*)



means that the sets of finite-dimensional (nonuni-
tary) representations of M are in 1-to-1 cor-
respondence with the finite-dimensional (uni-
tary) representations of K’. The latter leads to
the fact that the corresponding induced repre-
sentations are representations of finite K-type
[Harish-Chandra].

It turns out that some of the hermitian-symmetric
algebras share the above-mentioned special prop-
erties of the conformal algebra so(n,2). This
subclass consists of:

SO(’I’L,Q), Sp(naR)a SU(’I’L,’R), 80*(4n)7 E?(—25)
the corresponding analogs of Minkowski space-
time V being:

R* L1 Sym(n,R), Herm(n,C),

Herm(n,Q), Herm(3,0)

In view of applications to physics, we pro-
posed to call these algebras 'conformal Lie al-
gebras’, (or groups).



The corresponding groups are also called "Her-
mitian symmetric spaces of tube type' [Faraut-
Koranyi]. The same class was identified from
different considerations in [Gunaydin] called there
'conformal groups of simple Jordan algebras’.
In fact, the relation between Jordan algebras
and division algebras was known long time ago.
Our class was identified from still different con-
siderations also in [Mack—de-Riese] where they
were called 'simple space-time symmetries gen-
eralizing conformal symmetry’.

We have started the study of the above class
in the framework of the present approach in the
cases. so(n,2), su(n,n), sp(n,R), E7(_25),
we have considered also the algebra Eg(_14),
and others for which I would have no time to-
day.

Lately, we discovered an efficient way to ex-
tend our considerations beyond this class in-
troducing the notion of 'parabolically related
non-compact semisimple Lie algebras’.



e Definition: Let G,G’ be two non-compact
semisimple Lie algebras with the same com-
plexification g€ = ¢’C. We call them paraboli-
cally related if they have parabolic subalgebras
P=MaoABN, P =MapAdN, such that:
MC = aM/C (= pC =~ 7;/@).0

Certainly, there are many such parabolic re-
lationships for any given algebra §. Further-
more, two fixed algebras G,G’ may be parabol-
ically related via different parabolic subalge-
bras.

We summarize the algebras parabolically re-
lated to conformal Lie algebras with maximal
parabolics fulfilling (%) in the following table:



Table of conformal Lie algebras (CLA) G with M-factor fulfilling ()

and the corresponding parabolically related algebras G’,
also some non-CLA cases

g K M g’ M
dim V'
so(n,2) so(n) ® so(2) | so(n—1,1) so(p, q), so(p—1,q—1)
n=>3 p+q=
n =n-+2
su(n,n) u(n) @ su(n) | sl(n,C)r sl(2n,R) sl(n,R) & sl(n,R)
n >3
2 su*(2n), n = 2k su*(2k) ® su*(2k)
sp(n,R) u(n) sl(n,R) sp(ryr), n=2r| su*(2r), n =2r
rank =n >3
n(n+1)/2
s0*(4n) u(2n) su*(2n) so(2n,2n) sl(2n,R)
n>3
n(2n — 1)
Er(_25) e6 @ s0(2) Eg(—26) Er7 7y Eg(6)
27
below not CLA
s0*(10) u(5) su(3,1) ® su(2) |so(5,5) sl(4,R) & sl(2,R)
13
Eg(—14 s0(10) @ so(2) | su(5,1) Eg6) sl(6,R)
21 E6(2) SU(3, 3)
F; sp(3) @ su(2) |sl(3,R) & sl(2,R)
20
FY s0(9) so(7)
15
G2 su(2) & su(2) 0 min.
sl(2,R) max.
6 min.

5 max.




where we display only the semisimple part X' of
IC; sl(n,C)r denotes si(n,C) as a real Lie alge-
bra, (thus, (sl(n,C)r)® = sl(n,C) @ sl(n,C));
eg denotes the compact real form of FEg;
and we have imposed restrictions to avoid co-
incidences or degeneracies due to well known
isomorphisms:  so(1,2) = sp(1,R) = su(1,1),
so(2,2) = so0(1,2)Pso(1,2), su(2,2) = so(4,2),
sp(2,R) £ s50(3,2), so0*(4) = s0(3) @ so(2,1),
s0*(8) = s0(6,2).



Preliminaries

Let G be a semisimple non-compact Lie group,
and K a maximal compact subgroup of G.
Then we have an Iwasawa decomposition G =
K AgNg, where Ag is Abelian simply connected
vector subgroup of G, Ng is a nilpotent sim-
ply connected subgroup of G preserved by
the action of Ag. Further, let Mg be the
centralizer of Ag in K. Then the subgroup
Py = MyAgNg is a minimal parabolic sub-
group of G. A parabolic subgroup P = M'A'N’
is any subgroup of G which contains a minimal
parabolic subgroup.

Further, let G,K,P, M, AN denote the Lie
algebras of G,K,P,M,A, N, resp.

For our purposes we need to restrict to max-
imal parabolic subgroups P — MAN, Ii.e.



rankA = 1, resp. to maximal parabolic sub-
algebras P=M®dAPN with dim A= 1.

Let v be a (non-unitary) character of A,
v € A*, parameterized by a real number d,
called the conformal weight or energy.

Further, let u fix a discrete series represen-
tation DHF of M on the Hilbert space V,, or
the finite-dimensional (non-unitary) represen-
tation of M with the same Casimirs.

We call the induced representation y = Indg(u@)

v ® 1) an elementary representation of G
[DMPPT]. (These are called generalized prin-
cipal series representations (or limits thereof)
in [Knapp].) Their spaces of functions are:

Cxy = {FelC™(G,V,) | F(gman) =
e VU . Dr(m=1) F(g)}



where a = exp(H) € A', Hec A", me M,
n € N/. The representation action is the left
regular action:

(TX(g)F)(g") Flgtd), gdca.

e An important ingredient in our considera-
tions are the highest/lowest weight represen-
tations of GY. These can be realized as
(factor-modules of) Verma modules V" over
GC, where A e (HY)*, HC is a Cartan subal-
gebra of G€, weight A = A(x) is determined
uniquely from y.

Actually, since our ERs may be induced from
finite-dimensional representations of M (or
their limits) the Verma modules are always re-
ducible. Thus, it is more convenient to use
generalized Verma modules VN such that the
role of the highest/lowest weight vector vg is
taken by the (finite-dimensional) space Vv .



For the generalized Verma modules (GVMs)
the reducibility is controlled only by the value
of the conformal weight d. Relatedly, for the
intertwining differential operators only the re-
ducibility w.r.t. non-compact roots is essen-
tial.

e Another main ingredient of our approach is
as follows. We group the (reducible) ERs with
the same Casimirs in sets called multiplets.
The multiplet corresponding to fixed values of
the Casimirs may be depicted as a connected
graph, the vertices of which correspond to the
reducible ERs and the lines (arrows) between
the vertices correspond to intertwining opera-
tors. The explicit parametrization of the mul-
tiplets and of their ERs is important for un-
derstanding of the situation. The notion of
multiplets was introduced and applied to rep-
resentations of SO,(p,q) and SU(2,2), resp.,



induced from their minimal parabolic subalge-
bras. Then it was applied to the conformal su-
peralgebra, to infinite-dimensional (super-)algebras,
to quantum groups.

In fact, the multiplets contain explicitly all the

data necessary to construct the intertwining
differential operators. Actually, the data for
each intertwining differential operator consists
of the pair (B, m), where 8 is a (non-compact)
positive root of GC. m € N, such that the
BGG Verma module reducibility condition (for
highest weight modules) is fulfilled:

AN+p,8Y) = m, BY=28/(8,8)
p is half the sum of the positive roots of GC.
When the above holds then the Verma module
with shifted weight VA-m8 (or VA-mB8  for
GVM and B non-compact) is embedded in the
Verma module VA (or V7A). This embed-
ding is realized by a singular vector wvs deter-
mined by a polynomial P, g(G7) in the uni-
versal enveloping algebra (U(G-)) vg, G~ is



the subalgebra of gt generated by the nega-
tive root generators [Dixmier]. More explicitly,
[VKD1], ’U,'Sn,ﬁ = P pgvo (Of '027,,5 = Pm.8 Vi vo
for GVMSs). Then there exists [VKD1] an in-
tertwining differential operator

Dimp * Cx(ny — Cx(a-mp)
given explicitly by:

Dpg = Pm,p(G7)

where (3: denotes the right action on the
functions F.

In most of these situations the invariant op-
erator D,, g has a non-trivial invariant kernel
in which a subrepresentation of G is realized.
Thus, studying the equations with trivial RHS:

Dy f = 0, el

IS also very important. For example, in many
physical applications in the case of first order



differential operators, i.e., for m = mg = 1,
these equations are called conservation laws,
and the elements f € kerD,, g are called con-
served currents.

The above construction works also for the
subsingular vectors wvssy Of Verma modules.
Such a vector is also expressed by a polyno-
mial Pssp(G7) in the universal enveloping al-
gebra: wvjg, = Pssu(G7)vg. Thus, there exists
a conditionally invariant differential /o\perator
given explicitly by: Dssy = Pssu(G~), and
a conditionally invariant differential equation.
(Note that these operators (equations) are not
of first order.)

Below in our exposition we shall use the so-
called Dynkin labels:

m; = (N+p,ef), i=1,...,n,

where A = A(x), p is half the sum of the
positive roots of GC.



We shall use also the so-called Harish-Chandra
parameters:

mg = (AN+p,8) ,

where B is any positive root of G&. These
parameters are redundant, since they are ex-
pressed in terms of the Dynkin labels, however,
some statements are best formulated in their
terms. (Clearly, both the Dynkin labels and
Harish-Chandra parameters have their origin in
the BGG reducibility condition.)



Conformal algebras so(n,2) and parabol-
ically related

Let G = so(n,2), n > 2. We label the signa-
ture of the ERs of G as follows:

X = {nl,...,nﬁ;c}, njEZ/Q, C:d—%,
\n1|<n2<---<n7l, n even |
O<n1<n2<---<ni~l, n odd ,

where the last entry of x Ilabels the char-
acters of A, and the first h entries are labels
of the finite-dimensional nonunitary irreps of
M= so(n—1,1).

The reason to use the parameter ¢ instead
of d is that the parametrization of the ERSs
in the multiplets is given in a simple intuitive



+ :
X7 = {enl,...,nﬁ,:lznﬁ_l_l}, np <Mjiq
+ :
Xo = A{eni,...,ny_q, ngyq +ns }
+ :
X3 = A{eni,... M, oy M4 +ny 1}
+ :
X; = {enl,n3,...,nﬁ,nﬁ+1,:|:n2}
+ . o
Xfiq1 = {eng,...,nh,nh+1,:|:n1}
1, n even
€ —
1, n odd

Further, we denote by C’"Z-i the representation

Space with signature X,jt.

The number of ERs in the corresponding mul-
tiplets is equal to:

W (GE HO) /IWMEHE)| = 2(1+R)

where HE HE  are Cartan subalgebras of
GC. MC, resp. This formula is valid for the
main multiplets of all conformal Lie algebras.



We show some examples of diagrams of in-

variant differential operators for the conformal
groups so(5,1), resp. so(4,2), in 4-dimensional
Euclidean, resp. Minkowski, space-time. Here
and below we use the fact that algebras so(p, q)
for p + g-fixed are parabolically related. In
Fig. 1. we show the simplest example for the
most common using well known operators. In
Fig. 2. we show the same example but us-
ing the group-theoretical parity splitting of the
electromagnetic current, cf. [DoPe:78]. In
Fig. 3. we show the general classification for
so(5,1) given in [DoPe:78]. These diagrams
are valid also for so(4,2) and for s0(3,3) =
sl(4,R).



k] [Au]

Fig. 1.  Simplest example of diagram with conformal invariant operators
(arrows are differential operators, dashed arrows are integral operators)

oy = % , A, electromagnetic potential, d,¢ = A,
F electromagnetic field, OpAy = A, — 0, AN = F),

J,, electromagnetic current, *F), = J,, O*J, = ®



Fig. 2. More precise showing of the simplest example,
F =F* @® F~ shows the parity splitting of the electromagnetic field,
di9,d>3 linear invariant operators corresponding to the roots ays, a3
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Fig. 3. The general classification of invariant differential operators valid for
s0(4,2), so(5,1) and so(3,3) = sl(4,R).

are three natural numbers, the shown simplest case is when p=v=n=1,

ds,dy; linear invariant operators of order v corresponding to the roots as, a3

p7]/7n

dty, dbs linear invariant operators of order n, p corresponding to the roots aiz, as



Next in Fig. 4. we show the general even
case so(p,q), p+ q = 2h + 2-even, while in
Fig. 5. we show an alternative view of the
same case:



A
/
dl dl
Y
- +
A2 AQ
A
/
Y
A
/
dp—1 h—1
Y
- +
Ay, Ay
A
dp, dp4) dp+1 | dp
Y
- +
htl N

Fig. 4. The general classification of invariant differential operators in 2h-dimensional space-time.
By parabolic relation the diagram above is valid for all algebras so(p,q), p+ ¢ = 2h+ 2, even.



Fig. 5. Alternative showing of the case so(p,q), p+q=2h+ 2,
showing only the differential operators, while the integral operators
are assumed as symmetry w.r.t. the bullet in the centre.



Next in Fig. 6. we show the general odd
case so(p,q), p + g = 2h + 3-o0dd, while in
Fig. 7. we show an alternative view of the
same case:



A
d d
1 1
A 4
Ay Ay
A
d d"
2 2
A 4
A:k
/
dp—1 ho1
Y
Ay Ay
A
/
dh dh
\ 4 d
— h+1 +
Apaa N

Fig. 6. The general classification of invariant differential operators in 2k 4+ 1 dimensional space-time.
By parabolic relation the diagram above is valid for all algebras so(p,q), p+ ¢ =2h + 3, odd.
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Fig. 7. Alternative showing of the case so(p,q), p+q=2h+ 3,
showing only the differential operators, while the integral operators
are assumed as symmetry w.r.t. the bullet in the centre.



The ERs in the multiplet are related by inter-
twining integral and differential operators. The
integral operators were introduced by Knapp
and Stein. They correspond to elements of
the restricted Weyl group of g. These opera-
tors intertwine the pairs C’vf

Gf[ : C~;F—>('Z'ii, i = 1,...,14+h

The intertwining differential operators corre-
spond to non-compact positive roots of the
root system of so(n + 2,C), cf. [Dob88]. [In
the current context, compact roots of so(n +
2,C) are those that are roots also of the sub-
algebra so(n,C), the rest of the roots are non-
compact.] The degrees of these intertwining
differential operators are given just by the dif-
ferences of the ¢ entries [Dobsrni]:

degdz-=degd;=nﬁ+2_i—nﬁ+1_i, i=1,...

deg dﬁ—l—l =no—+mn1, n even

i



where d’h is omitted from the first line for (p+q)
even.

Remark: Note that for n-odd the integral
operator G;'L'+1 from /\;_H to /\?L'_H actually
degenerates to the differential operator dj ;.
This results from the fact that integral kernel
of G;L|'+1 IS a generalized function which is
singular, and after regularization a la Gelfand
it degenerates to a differential operator.<$>

Matters are arranged so that in every multi-
plet only the ER with signature x; contains
a finite-dimensional nonunitary subrepresenta-
tion in a subspace &. The latter corresponds
to the finite-dimensional unitary irrep of so(n+
2) with signature {ni,..., ng, nﬁ+1}. The
subspace £ is annihilated by the operator G+,
and is the image of the operator G .



Although the diagrams are valid for arbitrary
so(p,q) (p+ g > 5) the contents is very differ-
ent. We comment only on the ER with sig-
nature Xi". In all cases it contains an UIR of
so(p, q) realized on an invariant subspace D of
the ER Xi". That subspace is annihilated by
the operator G, and is the image of the op-
erator Gi". (Other ERs contain more UIRSs.)

If pg € 2N the mentioned UIR is a discrete se-
ries representation. (Other ERs contain more
discrete series UIRs.)

And if ¢ = 2 the invariant subspace D is the
direct sum of two subspaces D = DT @D,
in which are realized a holomorphic discrete
series representation and its conjugate anti-
holomorphic discrete series representation, resp.
Note that the corresponding lowest weight GVM
is infinitesimally equivalent only to the holo-
morphic discrete series, while the conjugate



highest weight GVM is infinitesimally equiva-
lent to the anti-holomorphic discrete series.

Note that the degd;, deg d;, are Harish-
Chandra parameters corresponding to the non-
compact positive roots of so(n+ 2,C). From
these, only degdq corresponds to a simple root,
i.e., iIs a Dynkin label.

Remark: The case of 3D Euclidean confor-
mal symmetry so(4,1) was treated in detail in
Chapter 7 of [DMPPT] Springer book. The di-
agram with four ERs of Fig. 6 was given there.
The case of 3D Minkowskian conformal sym-
metry so(3,2) was treated in detail later. $



Above we considered so(n,2) for n > 2.
The case n =2 is reduced to n =1 since
so(2,2) = so(1,2)P®so(1,2). The case so(1,2)
IS special and must be treated separately. But
in fact, it is contained in what we presented al-
ready. In that case the multiplets contain only
two ERs which may be depicted by the top
pair Xf in the pictures that we presented. And
they have the properties that we described for
so(n,2) with n > 2. The case so(1,2) was
given already in 1946-7 independently by Gel'fand
et al and by Bargmann.



Lie algebras su(n,n) and parabolically re-
lated

Let G = su(n,n), n > 2. The maximal
compact subgroup is K = u(1l)®su(n)®su(n),
while M = sl(n,C)r. The number of ERs in
the corresponding multiplets is equal to
2n
W@ 1O WwmE S = ()
The signature of the ERs of G is:
X = {ni,..;Mp-1,Np41 .-y M2p-1;¢}, n; EN

The Knapp—Stein restricted Weyl reflection is
given by:

Grgs : Cx — Cyus

X Y
X ={(n1, . ,np_1,p41,---,n2p-1)" —c}
(n].? <. 7nn—]_,'nn_|_]_, “ e 7n2n—1)* —
(’I’Ln_|_1, cee s N2 —1,M75 - - 7nn—1)

Below in Fig. 8 and in Fig. 9 we give the di-
agrams for su(n,n) for n = 3,4. (The case



n = 2 is already considered since su(2,2) =
so(4,2).) These are diagrams also for the parabol-
ically related sl(2n,R), and for n = 2k these
are diagrams also for the parabolically related
su*(4k).

We use the following conventions. Each inter-

twining differential operator is represented by
an arrow accompanied by a symbol i, j en-
coding the root (; ;. and the number mg. .
which is involved in the BGG criterion.



Fig. 8. Pseudo-unitary symmetry su(3,3)

The pseudo-unitary symmetry su(n,n) is similar to conformal symmetry
in n? dimensional space, for n = 2 coincides with conformal 4-dimensional case.

By parabolic relation the su(3,3) diagram above is valid also for si(6, R).



Fig. 9. Pseudo-unitary symmetry in 16-dimensional space.

By parabolic relation the su(4,4) diagram above is valid also for sl(8, R) and su*(8).



Lie algebras sp(n,R) and sp(75, %) (m—even)

Let n > 2. Let G = sp(n,R), the split
real form of sp(n,C) = G The maximal
compact subgroup is K = u(1l) @ su(n), while
M = sl(n,R). The number of ERs in the
corresponding multiplets is:

W(GE,HOY /W ME,HE)| = 2n
The signature of the ERs of G is:

x = {n1,....,np_1;c}, n; €N,

The Knapp-Stein Weyl reflection acts as fol-
lows:

GKS : CX — Cx’ 7X/ — {(n]_,...,’l’bn_]_)*; _C}7
(n1,..,np—1)" = (Mp_1,...,11)



Below in Fig. 10, Fig. 11, Fig. 12 and Fig. 13
we give pictorially the multiplets for sp(n,R) for
n=3,4,5,6. (The case n = 2 is already con-
sidered since sp(2,R) £ s0(3,2).) For n
2r these are also multiplets for sp(r,r), 7r
1,2,3. (The case n = 2,r = 1 is already
considered due to sp(1,1) £ s0(4,1) and the
parabolic relation between so(3,2) and so(4,1).)



Fig. 10. Main multiplets for Sp(3, IR)



444

Fig. 11. Main multiplets for sp(4,IR) and

sp(2,2)



911
Ag

Fig. 12.  Main multiplets for Sp(5, IR)



Fig. 13.  Main multiplets for sp(6,R) and sp(3,3).



Lie algebras E;(_o5) and E7 ()

Let G = FE7(_25). The maximal compact
subgroup is K = eg @ so(2), while M =
Lg(—g)- Ve choose a maximal parabolic subal-
gebra Pop = Mg®Ag®Ng, where Mgy = so(4),
dim Ny = 51.

The Satake diagram is:

| J6%p)
o ———— ——— @ ——— @@ ——— O ——— O
o1 o3 (e W) os g (%4

T he signatures of the ERs of ¢ are:

X — {711,...,716;0}, n]EN
expressed through the Dynkin labels:
n; =m; , c = —3(mg+my) =
= — %(le + 2mo + 3m3 + 4mg + 3ms +
+2mg + 2m7)



T he same signatures can be used for the parabol-
ically related exceptional Lie algebra E7 7y (with
M-factor Egg)).

The noncompact roots of the complex alge-
bra FE7 are:

a7, 17, NN 8 T YA

137, QD AT, X174, OD7 4,

1734, @17,35, Q17,36, X17.45, Q17,46
Q7 45, Q27 46,

a17,254, X17.264, 17,354, 17,364,
17,26,45, 17,36,45

™17,26,35,4 5 17,26,45.4

®17,16,354 — Q,

given through the simple roots «; :
Qjj = ot op] T Ty, 1<],
Qij k= Qg ij =Q T Q1+ T o+ o, <],

The multiplets of the main type are in 1-to-
1 correspondence with the finite-dimensional



irreps of FE-, i.e., they will be labelled by the
seven positive Dynkin labels m; € N.

The number of ERs in the corresponding mul-
tiplets is equal to

W (G, HO) /IW(KE,HE)| = 56
The multiplets are given in Fig. 14.

The Knapp-Stein operators G;—g act picto-
rially as reflection w.r.t. the bullet intertwin-
ing each 7;<_ member with the corresponding

7;5" member.



Fig. 14.

417,35

Al

m

317,35,4

g

417,364
317,26,4
217,36,45
A 37,264 Af
217,36,45
in
Aj 4
17,26,45
+
AC
517,26,45,4
ﬂ
Ay
617,26,35,4
Ay
717,16,35,4
4| 7171635,
Ag

Main multiplets for FEr_g5 and Eyeq).



Let G = FEg(_14).- The maximal compact
subalgebra is K £ s0(10) @ so(2), while M £
su(5,1).

The Satake diagram is:

OOéQ
o ——— ——— @& ——— & ——— O
o1 o3 %} os g

-~

T he signature of the ERs of § is:

X:{nl7n37n4an5an6;c}7 C:d—%
expressed through the Dynkin labels as:

— — 1 —
n, — m; , —C—§M&—

= Z(m1 + 2mp + 2mgz + 3myg + 2ms + mg)

The same signatures can be used for the parabol-
ically related exceptional Lie algebras FEgg)



and Eg (o) with M—factors si(6,R) and su(3, 3),
resp.

Further, we need the noncompact roots of
the complex algebra FEg :

ao, 14, 15, 16, 024, 025, a6 (2)
Q2 4, 0245, A2 46, 0254, Q15 4, 026 4
16,4, (1534, 2645, 01634, 16,45
16,35, 16,354, X16254 —

The multiplets of the main type are in 1-to-
1 correspondence with the finite-dimensional
irreps of G, i.e., they will be labelled by the
Six positive Dynkin labels m; € N.

Since these algebras do not belong to the
class of conformal Lie algebras (CLA) the num-
ber of ERs/GVMs in the multiplet is not given
by the formula for the CLA cases. It turns out
that each such multiplet contains 70 ERs/GVMs



- see Fig. 15. Another difference with the CLA
class is that pictorially the the Knapp-Stein op-
erators G% act as reflection w.r.t. the dotted
line separating the 7;; members from the

7;<+ members (and not as reflection w.r.t. a
central dot (bullet) as in the CLA cases).

Note that there are five cases when the em-
beddings correspond to the highest root o :
VAT 5 VAT AT = A~ —mza. In these five
cases the weights are denoted as: /\]f,,, /\]f,,
/\]5:, /\f, /\Zto, then: mgz = mqy,m3, myg, mg, mg,
resp. T hus, their action coincides with the ac-
tion of the Knapp-Stein operators Gii_ which
in the above five cases degenerate to differen-

tial operators as we discussed for so(q+ 1, q).

Note that the figure has the standard Eg sym-
metry, namely, conjugation exchanging indices
l1+—6, 3+«<—5.



29
Ay
494
324 & 92,45
AL AL
114 92,45 34 62.46
A7 % A
d Soas lig 02,46 - 324 d
£ Has ’
4pq 02,16 L1/ |495

615,34 1264
Hi6,4
AF
AT 516,34 196,43 615,34
d
At
196,43 516,34 4 31643
Af
Bi6,05Ly 516,34
416,35
AL
216,35,4
Ay
Fig. 15.  Main multiplets for

4164
\
316,43
y A:l—’
615,34
v

and E6(2) .

Eo—14), Ee(s)



T hank you for your attention!



